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Abstract

A perfectly divisible cake is to be divided among a group of agents. Each agent
is entitled to a share between zero and one, and these entitlements are compatible
in that they sum to one. The mediator does not know the preferences of the agents,
but can query the agents to make cuts and appraise slices in order to learn. We
prove that if one of the entitlements is irrational, then the mediator must use a
protocol that involves an arbitrarily large number of queries in order to construct
an allocation that respects the entitlements regardless of preferences.
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1 Introduction

1.1 Overview

Consider the problem of privatizing some jointly-owned property in accordance with well-
defined ownership shares, provided that (i) dividing the property among the owners is
more desirable than selling the property and splitting the proceeds, (ii) the owners are
unable or unwilling to compensate one another using money, and (iii) whether or not a
given allocation respects a given agent’s share is a subjective matter that depends on
that agent’s preferences. For example, a plot of land is to be divided in accordance with
a will among heirs who love the old family home, or a divorcing couple’s cherished assets
are to be divided in accordance with a prenuptial agreement. When the ownership shares
are equal, this is the classic problem of fair division (Steinhaus, 1948). In this article,
we investigate the communication costs associated with solving this problem through
mediation when the agents’ preferences are private information, building on the recent
contributions of Cseh and Fleiner (2020). In order to distinguish these communication
costs from incentive costs, we proceed under the first-best assumption that the agents
will be honest regardless of their incentives, and even so we find that these costs may be
unbounded: there may be no deadline by which a solution can be guaranteed.
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The importance of considering communication costs when comparing institutions
dates back at least to Hayek (1945), who argued that a crucial benefit of decentralized
markets relative to central planning is their lower communication costs. For emphasis,
these costs are distinct from other considerations related to private information, such as
incentive compatibility, credibility, transparency, and privacy.! Roughly, the concern we
investigate is not that strategically transmitted information may be inaccurate, or that
the agents may know too little relative to the mediator throughout the process, or that
sensitive information may be unnecessarily exposed; it is instead that mediation may be
impractical simply because it may take too long.

There are several ways to measure communication costs. In the context of mechanism
design, previous work has used communication complexity, or the worst-case volume of
bits (Yao, 1979; Kushilevitz and Nisan, 1997), to formalize that incentivizing honesty is
costly and that costs can be mitigated by using multi-stage protocols (Segal, 2007; Fadel
and Segal, 2009; Segal, 2010). In the context of fair division, costs are measured instead
using query complexity, or the worst-case number of questions asked by the mediator. We
show that mediation may be prohibitively expensive even without incentivizing honesty
while using a multi-stage protocol, and we do so using query complexity. At a high level,
the novelty of our contribution can be illustrated using the following two problems.

PROBLEM 1: A cake must be divided fairly across one million people. It is not enough
for the mediator to ensure that each person measures the value of his serving to be at
least one-millionth of the cake; the mediator must furthermore ensure that each person
deems his serving to be at least as good as any other.

PROBLEM 2: A decedent leaves a plot of land to be divided across two descendants,
a child and a grandchild, in accordance with an unusual will: the child’s share of the
estate must be equal to the proportion of the grandchild’s share to the child’s share. The
mediator need only ensure that each descendant measures the value of his parcel to be
at least his share of the whole plot.

Which problem is harder, as measured by the deadline the mediator can guarantee
to the agents, when the only activity that costs any time is communication by means
of classic Robertson-Webb queries (Robertson and Webb, 1998; Woeginger and Sgall,
2007)7 Perhaps surprisingly, the two-agent problem is harder. Indeed, for Problem 1, the
mediator can guarantee that a solution is found in finite time (Brams and Taylor, 1995),
and moreover can guarantee a deadline by which it is found (Aziz and Mackenzie, 2016).
By contrast, for Problem 2, while the mediator can still guarantee that a solution is found
in finite time (Barbanel, 1995; Shishido and Zeng, 1999; Cseh and Fleiner, 2020), we show
that the mediator can never guarantee a deadline if there is an agent whose entitlement
is an irrational number (Corollary 1), and this is the case for Problem 2. Notably, this
establishes the existence of a classic cake division problem that is finite but unbounded.

'ncentive compatibility is the central consideration in the large literature on mechanism design; see
for example Gibbard (1973). For credibility, see Akbarpour and Li (2020). For transparency, see for
example Hakimov and Raghavan (2023). For privacy in economics distinct from communication costs,
see for example Gradwohl and Smorodinsky (2017), Gradwohl (2018), Milgrom and Segal (2020), Eliaz,
Eilat, and Mu (2021), Mackenzie and Zhou (2022), and Haupt and Hitzig (2024).

2Indeed, the child’s share z € [0, 1] must satisfy 1 — 2 = 22, or x = ’1%@ ~ 61.8%; this is simply
the inverse of the golden ratio.



Corollary 1, in turn, follows from our main result, which involves associating each
entitlement profile with an index familiar to the literature: the least common denominator
of the entitlements, defined as infinity when there is an irrational entitlement. We refer to
this as the clonage to suggest the minimum number of clones required to form an economy
with equal entitlements, provided we must replace each agent with some number of clones
who equally split his entitlement.?

It is an old observation that we can solve a problem with finite clonage by solving
the associated clone problem where each agent’s clones inherit his preferences, and that
this in turn can be solved by a guaranteed deadline. Indeed, the idea can be illustrated
simply using the Dubins-Spanier variant of the Banach-Knaster protocol (Steinhaus, 1948;
Dubins and Spanier, 1961): given a knife that glides over the cake from left to right, (i) ask
each of the n clones to make a cut such that he measures the value to the left of his cut to
be %, (ii) give a clone with a left-most cut everything to the left of his cut, and (iii) iterate.
We solve the original problem by giving each agent all slices assigned to his clones, and
if the original entitlement profile has clonage n, then we require ) i = ”2; ' queries.

It is far less obvious, but true, that it is unnecessarily costly for the mediator to solve
the associated clone problem. Indeed, costs can be reduced by using the more elaborate
Even-Paz protocol (Even and Paz, 1984) in place of the simple Dubins-Spanier protocol,
and in a suitable sense this is the optimal protocol for solving the clone problem (Edmonds
and Pruhs, 2011). That said, Cseh and Fleiner (2020) show that costs can be reduced
further by directly solving the original problem using a recursive version of the two-agent
Cut Near-Halves protocol (Robertson and Webb, 1998), and that costs can be reduced
further still by iteratively splitting the original problem into two sub-problems using the
Cseh-Fleiner protocol (Cseh and Fleiner, 2020).

Even so, clonage remains relevant to the analysis. In particular, if there are n agents
and the clonage level is ¢, then the Cseh-Fleiner protocol requires 2(n — 1)[log, c] queries
(Cseh and Fleiner, 2020). Curiously, then, even though the Cseh-Fleiner protocol does
not solve the associated clone problem, it grows more costly with clonage. Why?

Our main result provides a general answer: even though it is unnecessarily costly to
solve the associated clone problem, clonage causes communication costs. More precisely,
for each clonage level c, and for each problem with n agents and a clonage above c, no
protocol is guaranteed to finish within [log, log, ZCﬁJ queries (Theorem 1). Our lower
bound and the Cseh-Fleiner upper bound together establish that a sufficient increase
in clonage alone can cause the mediator’s problem to become harder, though the gap
between these bounds leaves open the question of whether clonage is responsible for all
communication costs.

The explanation relies on an alternative interpretation of clonage: instead of viewing it
as an index of how many agent clones we require, we view it as an index of how many cake
clones we require. More precisely, the clonage c is the minimum number of miniature cake
replicas required to solve the problem in zero queries, provided that each agent values
each serving of a replica to be worth % of the associated serving in the original cake.
This is an index of the difficulty the mediator faces at his initial information set, and we
establish our main result by generalizing this difficulty index to other information sets.

3There is no word in English for amount of clones. We propose clonage, like coverage for an amount
covered, leakage for an amount leaked, or mileage for an amount of miles, but unlike coinage for the
creation of a new word.



axiom lower bound upper bound

no-envy Q(n?), Procaccia, 2009 O(n”nn ), Aziz and Mackenzie, 2016
proportionality | (nlogyn), Edmonds and Pruhs, 2011 O(nlogyn), Even and Paz, 1984
e-proportionality Q(log, log, C(e)), Corollary 2 O(log, C(e)), Cseh and Fleiner, 2020

Table 1: Query bounds for cake division. We hold the cake and knives fixed. The number of agents
is n, the clonage of entitlement profile e is C(e), and for each problem the cost we bound is the worst-case
number of queries across measure profiles. In the first two rows, n alone determines a unique problem. In
the third row, an arbitrary number of agents n > 2 is held constant, and the clonage determines a class
of problems indexed by entitlement profiles; the lower bound is for the best-case cost across problems
given the clonage and the upper bound is for the worst-case cost across problems given the clonage. See
Section 4.2 for the formal definitions.

1.2 Related literature

To facilitate this discussion, we first set the stage with some key definitions in the context
of a classic concrete example.

EXAMPLE 1: The mediator must allocate the interval cake C' = (0, 1] using the standard
knife (ki)icpp,1) defined as follows: for each t € [0,1], we have s, = (0,¢]. A serving is
any finite union of intervals of the form (a,b], and a kitchen measure is a probability
measure that assigns a positive value to each nonempty serving. The set of agentsis N =
{1,2,...,n}, the entitlement profile is e € [0,1]" with }_,_y e; = 1, and an allocation is an
assignment of servings to agents X = (X;);en such that the servings are pairwise disjoint
and collectively exhaustive. Initially, the mediator knows that the agents’ preferences are
represented by a kitchen measure profile p = (i;);en, but does not know which. In the
context of a kitchen measure profile u, an allocation X is (i) proportional if for each i € N
we have p;(X;) > £, (i) envy-free if for each pair i,j € N we have p;(X;) > p;(X;), and
(iii) e-proportional if for each i € N we have u;(X;) > e;.

For each entitlement profile e, we establish a lower bound on the worst-case number
of queries that the mediator must ask in an adaptive multi-stage protocol that determines
an e-proportional allocation regardless of the kitchen measure profile. Our lower bound is
established with particularly powerful queries, and thus holds for the classic Robertson-
Webb queries used throughout this discussion; see Cseh and Fleiner (2020) for a detailed
comparison of other query models.

We begin by discussing query bounds for envy-free allocation, proportional allocation,
and e-proportional allocation, in sequence; we then conclude with some remarks about
contributions we make to the model. Recall that in asymptotic order notation, O(f(z)) is
an upper bound and Q(f(z)) is a lower bound; see Section 4.2 for the familiar definitions.

No ENVY. When there are two agents, a protocol used by Prometheus and Zeus in
Hesiod’s Theogony, which dates from the eighth or seventh century BC (see Lowry, 1987,
Brams, Taylor, and Zwicker, 1995), constructs an allocation that is not only proportional
but moreover envy-free: one agent divides the cake into two parts he deems equal, then the
other agent chooses. In our model, because we work with particularly powerful queries,
this is a one-query protocol.

Calls for a three-agent envy-free protocol date to at least Gamow and Stern (1958),
and shortly thereafter, such a protocol was independently discovered by John Selfridge



and John Conway; see Brams and Taylor (1995). The extension of the Selfridge-Conway
protocol to even four agents remained a major open question for decades, until the arrival
of the Brams-Taylor protocol for any number of agents (Brams and Taylor, 1995).

For each kitchen measure profile, the Brams-Taylor protocol uses a finite number
of queries, and yet for each deadline the mediator might hope to guarantee, there is a
kitchen measure profile that takes too long. To quote Procaccia (2020): “Consequently,
as soon as Brams and Taylor solved the envy-free cake-cutting problem, they immediately
launched a new problem to the top of fair division’s most wanted list: the existence of a
bounded envy-free cake-cutting protocol.” In the meantime, it was established that any
envy-free protocol requires at least Q(n?) queries (Procaccia, 2009), which together with
the Even-Paz protocol for proportional allocation (Even and Paz, 1984) established that
envy-free allocation is more difficult than proportional allocation.

Finally, after enjoying decades as the leading candidate for a classic cake division
problem that is finite but unbounded, the problem of envy-free allocation was ultimately
classified as bounded with the arrival of the Aziz-Mackenzie protocol (Aziz and Macken-
zie, 2016). We continue the conversation by classifying a different classic cake division
problem as finite but unbounded, establishing that just as envy-free allocation is more
difficult than proportional allocation, so too is e-proportional allocation more difficult
than envy-free allocation.

RATIONAL ENTITLEMENTS. In the seminal contribution to fair division, Steinhaus (1948)
introduced his own proportional protocol for three agents as well as the Banach-Knaster
protocol for any number of agents. As discussed earlier, the latter has a particularly
simple variant involving a moving knife (Dubins and Spanier, 1961), yielding the original
upper bound for proportional allocation of O(n?). This was then improved to O(n log, n)
by the Even-Paz protocol (Even and Paz, 1984), which after some partial lower bound
results (Magdon-Ismail, Busch, and Krishnamoorthy, 2003; Woeginger and Sgall, 2007)
was shown to be optimal (Edmonds and Pruhs, 2011).

The seminal contribution also remarked that the Banach-Knaster protocol can be
adapted to rational shares and mused about protocol performance. To quote Steinhaus
(1948): “The procedure described above applies also, under slight modifications, to the
case of different (but rational) ideal shares. Interesting mathematical problems arise if we
are to determine the minimal numbers of ‘cuts’ necessary for fair division.” Presumably,
the slight modifications refer to solving the associated clone problem discussed earlier.

Decades later, two alternatives to cloning were proposed for two-agent problems: the
Ramsey Partition protocol (McAvaney, Robertson, and Webb, 1992) and the Cut Near-
Halves protocol (Robertson and Webb, 1998). The latter requires fewer queries than the
former (Robertson and Webb, 1998), and a recursive generalization of the latter requires
fewer queries than solving the associated clone problem with its optimal protocol (Cseh
and Fleiner, 2020). Decades later still, the Cseh-Fleiner protocol was proposed as a
further improvement, and it provides the current upper bound on the number of queries
required for e-proportional allocation (Cseh and Fleiner, 2020). As discussed earlier, even
though the Cseh-Fleiner protocol does not solve the associated clone problem, its upper
bound grows with clonage.

Finally, Cseh and Fleiner (2020) provide a lower bound whose distinction from our
lower bound is subtle but significant. In particular, Cseh-Fleiner provide a lower bound
for each problem as a function of what we call its fineness: the smallest n € N such



that % is at most the smallest positive endowment.* This can be rephrased using clonage
in the following sense: if for each clonage level we cherry-pick a problem that is as fine
as possible, then the number of required queries is (log, C(e)), where C(e) denotes the
clonage of e. By contrast, we prove that if for each clonage level we cherry-pick a problem
that is as easy as possible, then the number of required queries is Q(log, log, C(e)). These
lower bounds are not logically related, and at first glance they may appear rather similar.
That said, the strong conclusions that we draw in our overview require our lower bound.
Indeed, for Problem 2, where the mediator must divide the decedent’s estate across his
child and grandchild, the fineness level is three but the clonage level is infinity. See
Section 4 for further discussion.

GENERAL ENTITLEMENTS. The general problem of constructing an e-proportional was
first considered by Barbanel (1995), and to date there are three finite protocols that
solve this problem: the Barbanel protocol (Barbanel, 1995), the Shishido-Zeng protocol
(Shishido and Zeng, 1999), and the second Cseh-Fleiner protocol (Cseh and Fleiner, 2020).
All three protocols are unbounded, and we provide a simple explanation: no protocol that
solves this problem is bounded.

THE MODEL. First, we provide a measure-theoretic generalization of Example 1 that to
our knowledge is novel. Since at least Woodall (1980), the standard approach has been
to assert that the cake lives in Euclidean space alongside the Lebesgue measure, then
use the Lebesgue measure to construct knives and articulate the associated preference
requirements. By contrast, we directly specify the knives as the primitives from which the
servings are constructed, then use the knives to articulate our preference requirements.
This additional generality is largely an aesthetic choice, guided by the subjective principle
is that unnecessary details are often distracting.

Second, we provide a preference foundation for kitchen measures. While there are
existing foundations for the measures required for cake division (Barbanel and Taylor,
1995), we are able to use the additional structure that our algebra of servings inherits from
our primitive knives to provide foundations that are closer to classic decision theory. In
particular, ranking cake servings on the basis of preferences is mathematically equivalent
to ranking events on the basis of beliefs, and it is already known that Savage’s classic
foundation for representing beliefs with measures (Savage, 1954) extends from power
sets to algebras (Wakker, 1981; Marinacci, 1993). In order to obtain kitchen measure
representation, we further impose that (i) a serving is null if and only if it is what we
call a sliver, and (ii) preferences are continuous with respect to knives. The contribution
is that with our additional assumptions, we are able to drop Savage’s technical tightness
axiom, replacing it with two conditions that are somewhat easier to interpret (Theorem 2).

Finally, deviating from earlier literature, we include a formal definition of protocols;
they are strategies for the mediator in a particular one-player extensive-form game against
nature. This formality allows us to translate observations into the language of game

“Intriguingly, tiny entitlements have also proven troublesome for a mechanism design problem related
to privatizing jointly-owned property in accordance with well-defined ownership shares. In particular,
if two agents with private preference information are to allocate one indivisible object and monetary
transfers are feasible, then the entitlement profile has the property that it is possible to implement
efficient and voluntary allocations if and only if no agent has a tiny entitlement (Cramton, Gibbons, and
Klemperer, 1987). (More generally, for more than two agents, no agent should have a huge entitlement.)
Here, even zero counts as a problematic tiny entitlement because an agent who owns nothing can still
pay; thus the classic Myerson and Satterthwaite (1983) impossibility theorem is a special case.



theory, including notably our observation of an interesting phenomenon in a variant two-
player zero-sum game between the mediator and the adversary: when we restrict attention
to pure strategies, the game has a value but no Nash equilibrium.

2 Problems

2.1 Kitchens

In our problem, a mediator must cut a cake into servings while constrained by the available
technology for making cuts.

DEFINITION: A Fkitchen is a pair (C,K) that satisfies the following.
e (' is a nonempty set referred to as the cake.

e A knife is a strictly monotonic function & : [0,1] — 2¢, where for each t € [0, 1] we
write r; instead of x(t). Equivalently, (r;)icjo,1] € (29)%1 is a knife if for each pair
t,t" € [0, 1] such that t' > ¢, we have k; C kyp.

e K is a nonempty set of knives referred to as the knife block. This represents the
available technology for cutting the cake.

o A simple slice is a member of Uxecx Uicpo1) {ke, C\ke}, and a slice is any finite
intersection of simple slices. We let S C 2¢ denote the collection of slices. By
convention, we include C' € 8™ as the slice associated with the empty collection of
simple slices.

e A serving is a finite union of slices. We let S C 2¢ denote the collection of servings.
By convention, we include () € S as the serving associated with the empty collection
of slices. Observe that each slice is a serving: 8" C S.

Observe that S, together with its set-theoretic structure, is a Boolean algebra.®

We remark that the model has several alternative interpretations—for example, a slice
might represent a parcel of land, a time slot on a schedule, or an uncertain event—but
for brevity we stick to the cake interpretation.

Intuitively, if knife x glides over the cake from time zero to time one, then it can
make a cut by stopping at any time ¢ € [0, 1], in which case the cake is split into x; and
C\k;. We will eventually require that agents declare kg to be equivalent to no cake while
declaring k; to be equivalent to the entire cake, so it may already be useful to imagine
that a knife glides across (essentially) the entire cake. For our problem, the construction
of a particular serving may involve multiple knives, but we assume that the technology
for constructing servings is constrained to the fixed inventory of knives given by the knife
block, and as a result some subsets of the cake may not be feasible servings.

EXAMPLE 1: Let C' = (0, 1)% we refer to this as the square cake. Define the standard
vertical knife (which moves horizontally), (k¢):c0,1), and the standard horizontal knife

®More precisely, S is the subalgebra of 2¢ generated by the simple slices. It is clear that the latter
contains the former, and to see that the former contains the latter it suffices to write each member of
the latter in disjunctive normal form.



(which moves vertically), (x}):cp,1], as follows: for each t € [0,1], k; = {(z,y) € Clz < t}
and k; = {(z,y) € Cly < t}. Finally, define the knife block K = {(k¢)iejo,1], (K})tef0,1]}-
We refer to (C,K) as the (standard) square cake kitchen. In this case, {(z,y) € Clz = y}
is an example of a subset of the cake that is not a serving.

Before proceeding, we observe that we allow for algebras that are not o-algebras. This
point is not crucial to our main message, but it is relevant to some detailed remarks about
our relationship with the literature, and this point can be illustrated using our previous
example.

EXAMPLE 2: Let (C,K) be the square cake kitchen. We show that a countable family of
servings may have a supremum in S that is distinct from its supremum in 2¢, and may
also have no supremum in S. Indeed, for each m € N,% define S,, = (0,1— 2%,1] x (0,1] and
St = Umreqr2,..m (507 57] %[0, 1]. First, the family {.Sy, }men has supremum (0, 1) x (0, 1]
in 2¢ and supremum (0, 1] x (0, 1] in S; these are distinct and the former does not belong
to S. Second, the family {S! },.en has no supremum in S; thus S is not a o-algebra.

2.2 Kitchen measures

The cake will ultimately be consumed by a group of agents, each agent has preferences
over servings, and we make assumptions about these preferences that imply they can be
represented by exactly one measure with some additional structure. In this case, we say
that the measure assigns values to servings, and we use these values to articulate whether
or not a given allocation is satisfactory.

In our problem, the mediator does not know the agents’ preferences. To make the
mediator’s problem easier—and thus to make our negative result stronger—we suppose
that the mediator knows that for each agent, a slice is worth nothing if and only if it is
what we call a sliver: a slice that some knife can cut no further, or a serving contained
in such a slice, or a finite union of such servings.

DEFINITION: Fix a kitchen. We define slivers in three steps: (i) a slice S € 8™ is a
slice-sliver if there is k € K such that for each ¢ € [0, 1], we have SNk, = 0 or S\r; = 0,
(ii) a subslice-sliver is a serving that is a subset of a slice-sliver, and (iii) a sliver is a finite
union of subslice-slivers. We let §° C S denote the collection of slivers; this is the ideal
generated by the slice-slivers. By convention, we include () € S° as the sliver associated
with the empty collection of subslice-slivers.

In order to learn about preferences, the mediator may select an agent, a knife, a
serving, and a target proportion, then request that the agent use the knife to cut a part
from the serving such that the ratio of the part’s value to the serving’s value is the target
proportion. To make the mediator’s problem even easier—and thus to make our negative
result even stronger—we suppose that the mediator knows that agents are always able
to complete these requests. In particular, we assume that the mediator knows that each
agent’s preferences are represented by what we call a kitchen measure.

DEFINITION: Fix a kitchen. A probability measure is a function po : S — [0,1] such
that (i) uo(S) = 1, and (ii) for each pair A, B € S such that AN B = (), we have

6In this paper, we write N = {1,2,...} and Ny = NU {0}.



to(AU B) = u(A) + u(B). In this case, we say that p is moreover a kitchen measure if
it satisfies the following conditions.

e Null slivers. For each S € S, we have puy(S) = 0 if and only if S € S°.

e Knife divisibility. For each A € S, each p € [0, 1], and each k € K, there is ¢t € [0, 1]
such that p(A N k) =p- p(A).

We let M C [0,1]° denote the collection of kitchen measures. We say that (C,K) is tidy
if and only if M # (.

To conclude this section, we first illustrate the definition of kitchen measure using the
square cake, then discuss tidy kitchens, and finally discuss preference assumptions. We
begin with the illustration.

EXAMPLE 3: Let (C,K) be the square cake kitchen. The restriction of the Lebesgue
measure to S is a kitchen measure, so the square cake kitchen is tidy. The only sliver is
the empty serving, so in order for a probability measure to be a kitchen measure, null
slivers requires that each nonempty serving is assigned a positive value.

To see that null slivers does not imply knife divisibility, let V' denote the vertical
line segment {0.5} x [0,1]. For emphasis, V' is not a serving and thus not a sliver. For
each S € S, (i) define p*(S) to be the one-dimensional Lebesgue measure of S NV,
(ii) define p**(S) to be the two-dimensional Lebesgue measure of S, and (iii) define
1(S) = Lp*(S) + L#*(S). Then p is a probability measure that satisfies null slivers, yet
it violates the knife divisibility: for the standard vertical knife x, there is no ¢t € [0, 1]
such that p(C N k) =1 - p(C) = 1.

To see that knife divisibility does not imply null slivers, define C* = (0, %] x (0, %],
and for each S € S, define u(S) to be the two-dimensional Lebesgue measure of S N C*
multiplied by four. Then p is a probability measure that satisfies knife divisibility, yet it
violates null slivers because (£, 1] x [0, 1] is not a sliver but nevertheless is assigned zero

2
value.

As the previous example illustrates, the square kitchen is tidy. As the next example
illustrates, not all kitchens are tidy.

EXAMPLE 4: Let C' = [0, 1]%, and for each dimension d € R, let k? be the knife such
that for each t € [0, 1] we have k¢ = {z € C|zy < t}. We claim that (C,K) is not tidy.
Indeed, for each d € R, define

Aq = {z € C|zq > } and for each d' € R\{d} we have z4 < 1}.

Then {Ag}aer is a continuum of pairwise disjoint servings that are not slivers; so there
cannot be a kitchen measure. Indeed, assume by way of contradiction that p € M, and
for each m € N, define D,, = {d € R|u(44) € (=5, L1]}. Then (i) UpenDyn = R, so

m+1’m

| Umen Di| = |R|, and (ii) for each m € N we have |D,,| < m, s0 | Upnen Dm| < |N|. But
then |R| < |N|, contradicting |N| < |R|.

In order for a kitchen to be tidy, the quotient algebra—obtained by declaring two
servings to be equivalent if their symmetric difference is a sliver, gathering the equivalence



classes, and deriving algebraic operations from the original algebra in the natural way—
must carry a strictly positive measure and therefore satisfy Kelley’s criterion (Kelley,
1959). The cake division literature has largely focused on tidy kitchens obtained like the
square cake kitchen: begin with a probability space equipped with a countably additive
and atomless reference measure—usually Euclidean space equipped with the Lebesgue
measure—and then require each knife’s nested family of servings to be strictly monotonic
in the reference measure. We remark that the inquiry into when certain algebras are
compatible with certain measures traces back to at least 1937, when John von Neumann
raised Problem 163 of the Scottish Book (Mauldin, 1981).

We conclude this section by discussing preference assumptions. To reiterate, we make
assumptions about each agent’s preferences that imply they can be represented by exactly
one kitchen measure. What, exactly, are these assumptions? The short answer is that we
are assuming (i) the classic qualitative probability axioms (Bernstein, 1917; de Finetti,
1937; Koopman, 1940), (ii) one of the two technical axioms of Savage (1954), (iii) the null
servings are the slivers, and (iv) each knife is continuous in a suitable sense. Notably,
these assumptions together imply the second technical axiom of Savage (1954). These
claims require further elaboration, but as they are not crucial to our main result about
communication costs, we postpone the details until Section 5.1.

2.3 Settings and entitlements

The cake will ultimately be consumed by a group of agents, and the mediator must
partition the cake into servings and then match these servings to the agents so that the
resulting allocation is, in a sense to be made precise shortly, satisfactory.

DEFINITION: A sefting is a tuple (C, K, N) that satisfies the following.
e (C,K) is a tidy kitchen.
e N is a finite and nonempty set of agents, with n = |N|.

o X C SV is the set of allocations: for each X € SV, we have X € X if and only if
(i) for each pair 7,5 € N, we have X; N X; = 0, and (ii) U;enX; = C.

All of our results involve fixing an arbitrary setting.

In our problem, each agent is equipped with both (i) an entitlement to a share of
the cake between zero and one, and (ii) a kitchen measure representing his preferences.
Moreover, the agents’ entitlements are compatible in that they sum to one. Whether or
not a given allocation is satisfactory depends on both the entitlements and the kitchen
measures: each agent should receive a serving that is worth at least his entitlement
according to his measure.

DEFINITION: Fix a setting.
o E={ec|0,1]N]> ¢; =1} is the set of entitlement profile.

o D = MY is the unrestricted domain (of all kitchen measure profiles).
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For each e € F and each p € D, an allocation X € X is (e|u)-proportional if for each
i € N, we have p;(X;) > e;. When omitting p creates no confusion, we use the simpler
term e-proportional.

In the special case that each agent has entitlement %, e-proportionality coincides with
the classic notion of proportionality (Steinhaus, 1948). As discussed earlier, the general
existence of e-proportional allocations has been shown by construction (Barbanel, 1995;
Shishido and Zeng, 1999; Cseh and Fleiner, 2020), and there are particularly simple
proofs of existence for two special cases: (i) each agent’s measure is countably additive
(Liapounoff, 1940; Dubins and Spanier, 1961), and (ii) each entitlement is a rational
number (Steinhaus, 1948; Dubins and Spanier, 1961).

We consider a mediator who knows the entitlement profile but not the kitchen measure
profile, and who is tasked with constructing an e-proportional allocation regardless of the
kitchen measure profile. To do so, the mediator may communicate with the agents in order
to learn more about their preferences, and the allocation that the mediator constructs
may be contingent on the information that he receives. That said, communication is
costly, and the mediator’s problem is to keep these costs down.

3 Solutions

3.1 Queries

In order to learn about the agents’ preferences, the mediator selects a query and receives
a response. Since the seminal contribution of Robertson and Webb (1998), these terms
have been formalized in several different ways (Woeginger and Sgall, 2007; Edmonds and
Pruhs, 2011; Cseh and Fleiner, 2020).

Our choice of definition is based on two considerations. First, as an aesthetic choice,
we require that whenever a cut is made, the mediator does not lose access to old queries or
gain access to new queries: the mediator adaptively selects from the fixed set of queries.
Second, because our main result loosely states that many queries are required to solve our
problem, we should allow for ‘powerful’ queries in order to strengthen our main result.

DEFINITION: Fix a setting. A query is a tuple q = (i, K, S,p) specifying (i) a cutter
i € N, (ii) a knife x € K, (iii) a serving S € S, and (iv) a target proportion p € [0, 1].
The interpretation is as follows:

e First, the mediator uses the knives to construct S.

e Second, the mediator asks i to use both his private measure and the knife x to
cut S in order to construct S’ C S with the property that, according to his private
measure, the proportion of the value of S’ to the value of S is precisely the target
proportion p. To be explicit, if this private measure is p;, then the constructed S’
should satisfy 1;(S") = p - p;(S). Furthermore, the mediator provides detailed
instructions about how S’ should be constructed; see the next section.

e Third, the mediator asks every agent to use his private measure to appraise both
the value of S and the value of 5.

We let Q denote the set of queries.
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This query definition is our adaptation of the ‘stronger query definition” of Cseh and
Fleiner (2020) to our model.

3.2 The cutter’s serving

For each query, the cutter is able to construct a serving that satisfies the mediator’s
requirements because his preferences are represented by a kitchen measure. Moreover, if
there are several such servings, then it does not matter which the cutter selects: in all
cases the mediator receives the same information because he knows which servings are
null. It is therefore without loss of generality to assert that the cutter is given specific
instructions for how to break ties, and doing so simplifies the presentation.

DEFINITION: Fix a setting. For each query q = (i, k, S,p) and each p; € M, we define
the (q|u;)-threshold by 7(q|p;) = inf{t € [0, 1]|u;(S N k) > p- 1 (S)} and we define the
(a|ps)-serving by Sqju, = SN EKr(q|u). The interpretation is that when the mediator selects
query q and the cutter ¢ has preferences represented by p;, the output serving is Sq,, .

The intended interpretation is that in order to construct Sg,,, the cutter i glides &
over S, starting at time zero, until the first moment that S N k; is worth at least the
target value, at which point he cuts. By the following lemma, the intended interpretation
is valid.

LEMMA 1: Fix a setting. For each query q = (4,5, k, p) and each p € D, the constructed
serving satisfies the mediator’s request: 11;(Squ,) = p - pi(S).

PROOF: Assume the hypotheses. Since p; is a kitchen measure, there is t € [0, 1] such
that 1;(S N ky) = p - wi(S). Then 7(qlw) < t, 50 Sqiu; = S N Krgu) S S N ke, 50
11i(Sqjps) < pa(S N ke) = p - ().

Assume, by way of contradiction, that ji;(Sq,) < p - wi(S). Then there is p’ € [0, 1]
such that p;(Squ,) < ' - wi(S) < p- wi(S), so as p; € M there is ¢ € [0,1] such that
pi(S N k) = p - i (S) > pi(Squ,), so t' > 1(q|u;). But then by definition of 7(q|u,;) we
have p;(S N ky) > p- pi(S), contradicting p;(SNky) = p' - wi(S) < p- wi(S). Altogether,
then, 11;(Sq,) = p - 1i(S), as desired. B

3.3 Records, restrictions, and responses

Initially, the mediator knows only that the measure profile belongs to the unrestricted
domain D, but after selecting a query and receiving the agents’ response, the mediator
learns that the measure profile belongs to a restricted domain I’ C D. More generally,
from a list of queries and their responses, the mediator learns a restricted domain. We
begin with the general definitions and then define the response to an individual query as
a special case.

DEFINITION: Fix a setting. For each collection of servings &’ C S, an 8'-appraisal is a
function o : &' — [0,1]. A (finite) record is a pair (S’,«’) such that (i) &’ C S with
|S’| € N, and (ii) o/ = ();en is a profile of S’-appraisals. In this case, we define the
associated restricted domain to be the collection of kitchen measure profiles that extend
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the appraisal profile, D(S’,a/) = {u € Dlfor each i € N, = u;[s}, and we say that
(8, ) is valid if D(S’, ) # 0.7

DEFINITION: Fix a setting. Given a pair of records (§’,¢) and (8", "), we say that
(8”,a") is at least as informative as (S',a’) if D(S”,a”) C D(S', ).

Initially, the mediator does not know how any agent appraises any non-null serving,
but at any later stage the mediator will have some query responses that allow him to fill
in some of the blanks. The resulting record is a collection of servings together with their
appraisal from all agents, and this record in turn functions as a domain restriction: the
mediator is sure that the measure profile extends the appraisal profile. A special case is
the record consisting of a response to a single query.

DEFINITION: Fix a setting. For each query q = (i, k,S,p) and each u € D, the (q|u)-
response, r(q|u), is the record (8, o) such that (i) S’ = {5, 5, }, and (ii) for each j € N,
oy = pjlg. In this case, the (q|u)-domain, D(q|u), is D(r(q|u)).

This definition fits our earlier discussion of queries. Indeed, suppose the mediator
selects g and the measure profile is p. Then first, the mediator constructs S; second, the
cutter constructs Sy,,; and third, every agent appraises both S and Sg,,. As a result,
the mediator learns that the measure profile belongs to D(q|u) C D.

3.4 Protocols

The mediator must communicate with the agents until he can identify an allocation that
is surely satisfactory, in the sense that it respects the entitlements, given what he has
learned. Communication is costly, however, and thus the mediator seeks to select a
(communication) protocol that keeps costs down, subject to the constraint that it always
identifies a satisfactory allocation.

We formalize a protocol as a pure strategy for the mediator in the following game
against nature: nature opens with an unobserved selection of the measure profile, and
thereafter the mediator iteratively selects queries and receives responses until he ends
the game by selecting an allocation. We begin by formalizing our game against nature,
minimizing the notation that we introduce in anticipation of our proof’s requirements.

DEFINITION: Fix a setting. For each e € E, the division game given e is the one-player
game against nature defined as follows.

e The only player with payoffs is the mediator, and nature also plays. There are
also histories partially ordered by precedence, active players and actions associated
with non-terminal histories, information sets, and payoffs. The precedence order is
such that each history and action at that history together determine an immediate
successor, or an earliest history that follows. We define these remaining ingredients
below, defining precedence entirely using immediate successors.

e The initial history is non-terminal, its active player is nature, and its set of available
actions is M". Nature’s choice of measure profile is not observed by the mediator.

"We are mostly interested in valid records, but for some arguments it is convenient to work with
records that are not valid because they assign zero to servings that are not slivers.
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After each choice of nature, the immediate successor is non-terminal.

e At each non-terminal history other than the initial history, the active player is the
mediator and the set of available actions is Q U X'. We denote the set of histories
where the mediator is the active player by H. If the mediator selects a query, then
the immediate successor is non-terminal. If the mediator selects an allocation, then
the immediate successor is terminal.

e Each non-initial history A is identified with the finite sequence of actions that
leads to h from the initial history: there is a (query) count ¢ € Ny such that
h = (4,491,492, ..-,dc). In this case, the chronicle at h is the list of queries and
their responses, (q1, r(qi|us), g2, r(az|p), ..., de, r(de|pe)). Moreover, the h-domain is
D(h) = MNieqr2,...D(r(ae|pe)), where by convention ¢ = 0 implies D(h) = I; this is
nonempty as p € D(h). Finally, two histories share an information set if and only
if (i) the mediator is the active player at both histories, and (ii) the two histories
have the same chronicle. Observe that if A and A’ share an information set, then
D(h) = D(K).

e A play is a maximal chain of histories. If a play ends at a terminal history with a
query count of ¢, if the measure profile selected by nature is u, and if the allocation
selected by the mediator is (e|u)-proportional, then the mediator’s payoff is —c;
otherwise it is —oo.

In this case, when we delete the payoffs, the result is the division game form. Note that
our main result about communication costs does not directly involve these payoffs, but
rather the related costs that we introduce shortly; thus at this point the payoffs can be
taken as suggestive.

A protocol is a plan for the mediator in the division game form that is contingent
only upon the available information.

DEFINITION: Fix a setting. A protocol is a pure strategy for the mediator in the division
game form. Equivalently, a protocol is a function 7 : H — QU X" such that for each pair
h,h' € H, if h and b’ share an information set, then 7(h) = w(h'). In this case, for each
w € D, we define cost(m|u) € Ny U {oo} and out(w|u) € X U {error} as follows.

e If the play determined by p and 7 is infinite, then we define cost(m|u) = oo and
out(7|u) = error.

e If the play determined by p and 7 is finite, then let ¢ denote the query count
of its terminal history and let X denote its final action. In this case, we define
cost(7|p) = ¢ and out(w|pn) = X.

We let II denote the set of protocols. Observe that for each e € E, the mediator’s payoff
in the division game given e for the play determined by p and 7 is (i) —oo, if either
out(m|u) = error or out(w|u) is not (e|u)-proportional, and (ii) —cost(w|u), otherwise.

We assess each protocol in the context of a given entitlement profile e, but instead
of doing so using payoffs directly, we separately assess (i) whether or not the protocol
always constructs e-proportional allocations, and (ii) the worst-case communication cost
measured in queries. We begin with the former.
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DEFINITION: Fix a setting. For each e € E, a protocol is e-proportional if for each
p € MY, out(m|p) € X and out(r|u) is (e|p)-proportional. We let II, C II denote the set
of e-proportional protocols.

The set of e-proportional protocols is known to be nonempty (Barbanel, 1995; Shishido
and Zeng, 1999; Cseh and Fleiner, 2020), and we are interested in comparing these
protocols according to the following performance metric.

DEFINITION: Fix a setting and a protocol. The worst-case cost of 7 is

cost(7) = sup cost(m|u).
pneD

If cost(m) = oo, then we say that 7 is unbounded; otherwise we say that 7 is bounded.

Altogether, then, the mediator’s problem is given by a setting and an associated
entitlement profile e, and the objective is to minimize the worst-case cost among the
e-proportional protocols.

DEFINITION: Fix a setting. For each e € FE, the optimal worst-case cost of an e-
proportional protocol is

cost(e) = min{c € Ny U {oo}| there is 7 € I, such that cost(w) = c}.

Because the set of e-proportional protocols is nonempty (Barbanel, 1995; Shishido and
Zeng, 1999; Cseh and Fleiner, 2020), this is well-defined.

4 Communication costs

4.1 The mediator’s problem

In their important contribution, Cseh and Fleiner (2020) associate each problem that the
mediator might face with both a lower bound and an upper bound on its cost. These
bounds and our analysis together involve three indices for entitlement profiles: clonage,
precision, and fineness. The most important index is clonage, which we ultimately use
to present both our lower bound and the Cseh-Fleiner upper bound. Our lower bound
analysis involves precision, while the Cseh-Fleiner lower bound involves fineness, and
crucially clonage can only be bounded as a function of the former.

If we restrict attention to entitlement profiles with rational and positive entitlements,
then the three indices admit simple verbal descriptions.

e The clonage is the minimum number of clones required to form an equal-entitlement
economy, provided we must replace each agent ¢ with n; € N clones who equally
split e;. This is the least common multiple of the denominators of the entitlements’
reduced fractions.

e The precision is the maximum of the denominators of the entitlements’ reduced
fractions.

e The fineness is the smallest denominator of a positive fraction that is at most the
smallest positive entitlement.
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The formal definitions, which apply to all entitlement profiles, are as follows.

DEFINITION: Fix a setting. For each m € N, define the set of m-ruler markings by
M, = {Z%|a € {0,1,...,m}} and the set of positive m-ruler markings by M}, = M,,\{0}.

For each e € F, we define the following.
e The clonage of e is C(e) = min({m € N| for each i € N,e; € M, } U {o0}).

e For each i € N, P;(e) = min({m € Nle; € M,,} U{oo}). The precision of e is
P(e) = max;en P;(e).

e For each i € N, F;(e) = min{m € Nle; € {0} U [min M 1]}. The fineness of e is
F(e) = max;en Fi(e).

When C, P, and F are viewed as functions from E to N U {oc}, we refer to them as the
clonage index, the precision index, and the fineness index, respectively.

The Cseh-Fleiner upper bound involves clonage.

THEOREM CF1:® Fix a setting. For each e € E and each clonage level c € N, C(e) = ¢
implies cost(e) < 2(n — 1)[log, c].

By contrast, at the entitlement profile level, the Cseh-Fleiner lower bound involves
fineness.

THEOREM CF2:? Fix a setting. For each e € F and each fineness level f € N, F(e) > f
implies cost(e) > (n — 1) logs f.

We sketch the intuition for this lower bound, which remarkably applies even when
(i) there are two agents, (ii) we know one agent’s measure, and (iii) after each query we
learn the other agent’s appraisal of the new partition generated by the old partition and
the query. Indeed, suppose we know i1, and suppose the entitlement profile has fineness
greater than f because % > ey > 0. Any query and response together divide each cell of
the old partition into at most three new sub-cells, and Cseh and Fleiner (2020) prove that
it is always possible for 2 to respond that all of each old cell’s value—except, perhaps, a
negligible amount!’—resides entirely in its new sub-cells that 1 values most. In this case,
after ¢ queries, a non-negligible cell for 2 is worth at least 3% to 1, we must give such a
cell S to 2, and in order for 1 to agree we must have 3% <m(S)<l—e=e< %; thus
the number of queries ¢ must be great enough given the fineness f.

Our first proposition provides a lower bound at the entitlement profile level using

precision instead of fineness.

PROPOSITION 1: Fix a setting. For each e € FE and each precision level p € N, P(e) > p
implies cost(e) > |log, log, 2p].

8This is Theorem 5.5 of Cseh and Fleiner (2020).

9This is a variant of Theorem 6.3 in Cseh and Fleiner (2020) involving strict inequalities instead of
weak inequalities; a minor modification of the original proof suffices for this version.

10This modification is needed in our model because the mediator knows the set of null servings precisely.
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The proof spans Appendix 1, Appendix 2, and Appendix 3. At a high level, the first
appendix establishes our main two-agent lemma for queries that select a cell of the current
partition (Lemma 3), the second appendix establishes our generalization of Lemma 3 to
all queries (Lemma 4), and the third appendix applies Lemma 4 to establish the lower
bound for any number of agents (Proposition 1). The key idea is that by cloning the cake
instead of the agents, we can index the deficiency of a collection of responses. We discuss
this proof in more detail in Section 4.3.

The original presentation of the Cseh-Fleiner lower bound involves clonage, and we
include such a statement as part of Corollary CF in Section 4.2. Crucially, however,
that statement is at the setting level. At the entitlement profile level, a lower bound
involving fineness cannot be translated to a lower bound involving clonage, yet a lower
bound involving precision can, and this is a consequence of the relationships between the
three indices described by the following proposition.

PROPOSITION 2: The three indices can be compared as follows.
e For each setting and each e € E, we have C(e) > P(e) > F(e).
e There are a setting and an e € E such that C(e) > P(e).

e For each setting with n > 2 and each e € E, C(e) = oo implies P(e) = oo and
C(e) € N implies P(e)" > C(e).

e For each setting with n > 2, there is no f : N — N such that for each e € F,
P(e) € N implies f(F(e)) > P(e).

PRrROOF: We begin with the first two items. The first item is immediate from definitions;
we omit the proof. For the second item, an example is any setting with N = {1,2, 3,4},
er =3, ea =13, €3 =15, and e, = 7=; in this case C(e) = 30 and P(e) = 15.

For the third item, fix a setting with n > 2 and let e € E. If C(e) = oo, then there is
an irrational entitlement and thus P(e) = oo, as desired. If C(e) € N, then define ¢ = C(e)
and define p = P(e). Moreover, for each i € N, define b; = P;(e). Re-index the agents
using N = {1,2,...,n} such that by > by > ... > b, then define b =b; - by - ... - b,_1. For
each i € N\{n}, there is a; € {0,1,...,b;} such that e; = %, so there is a; € {0,1,...,b}

b’
_ g o b e N {n) %
such that e; = 3, so ¢; € M;. Moreover, e, = 1 — ZieN\{n} € = — 3 80

en € My. Altogether, then, ¢ < b < b7 ! = p"~ !, as desired.

For the final item, assume by way of contradiction we have such a function f. For

each m € {3,4, ...}, let €™ € E be such that one agent has entitlement % — #ﬂ, another
1

agent has entitlement %—1— 7y and all other agents have entitlement zero. Then for each

m € {3,4,...}, we have F(e™) = 3 and P(e™) = 4m + 2. But then there is m € {3,4,...}
such that P(e™) > f(3) = f(F(e™)), contradicting that f(F(e™)) > P(e™). R

Using Proposition 2, we can translate Proposition 1 from a lower bound involving
precision to one involving clonage.

THEOREM 1 (MAIN RESULT): Fix a setting with at least two agents. For each clonage
level c € N, C(e) > c implies cost(e) > [log, log, QCﬁJ.
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If there is one agent, of course, then for the unique member of £ we have cost(e) = 0.
We conclude this section with our titular corollary about the irrationally entitled.

COROLLARY 1: Fix a setting and an entitlement profile e. If there is an agent whose
entitlement is irrational, then no e-proportional protocol is bounded.

4.2 The meta-problem

In this section, we use Theorem 1 to analyze how cost varies as the problem varies. To
do so, we consider the meta-problem of selecting a protocol for each problem, also known
as the algorithm selection problem (Rice, 1976). The distinction between the mediator’s
problem and the meta-problem is worth emphasizing.

e A problem is given by a setting and an entitlement profile e. In this case, an instance
is a kitchen measure profile p, whose associated solutions are the (e|u)-proportional
allocations, and a protocol maps each instance to one of its solutions.

e A meta-problem is given by a setting. In this case, a meta-instance is an associated
problem given by an entitlement profile e, whose associated meta-solutions are the
e-proportional protocols, and (iii) a meta-protocol maps each meta-instance to one
of its meta-solutions.

We note that our methodology for analyzing the meta-problem, which is standard in the
cake division literature, involves parameterized complexity theory (Downey and Fellows,
1999; Flum and Grohe, 2006). In particular, in the terminology of Flum and Grohe
(2006), a parameterization of a problem is a function that associates each instance with
a parameter. We take the clonage index as our parameterization of the meta-problem,
while other papers on cake division take the number of agents as the parameterization.

For the mediator’s problem, which protocols are optimal depends on the performance
metric, and we focused on a single metric: the worst-case communication cost measured
in queries. For the meta-problem, the optimal meta-protocols are fixed as those that
associate each problem with an optimal protocol, and we measure how their performance
varies with clonage using two metrics.

DEFINITION: Fix a setting. Let infcost : N — R, U {oo} and supcost : N — R, U {0}
be defined such that for each clonage level c € N,

infcost(c) = inf{cost(e)|e € £ and C(e) = c}, and
supcost(c) = sup{cost(e)|e € F and C(e) = c}.

Recall that for each f: N — R, U{oc} and each g : N — R, we use g to express the
asymptotic order of f by writing

o f(z) = O(g(x)) if there are z* € N and M* € Ry € [0,00) such that for each
xe{zr,x*+1,..}, f(x) < M*-g(x), and

o f(x) = Qg(x)) if there are 2* € N and M* € R, € [0,00) such that for each
xe{zr, " +1,...}, f(x) > M*-g(x).

18



We are interested in expressing the asymptotic order of infcost and supcost.

Theorem CF1 and Theorem CF2 together bound supcost both above and below, and
our results do not improve either bound.

CoroOLLARY CF (CseH AND FLEINER, 2020): Fix a setting. We have supcost(c) =
O(log, c) and supcost(c) = 2(logs c) = Q(log, c).

Instead, we provide a lower bound on infcost.
COROLLARY 2: Fix a setting. We have infcost(c) = Q(log, log, c).

Together, Corollary CF and Corollary 2 allow us to formalize our key insight that
clonage causes communication costs: a sufficient increase in clonage guarantees that
costs increase.

COROLLARY 3: Fix a setting. For each clonage level ¢ € N, there is clonage level
¢ € N with ¢ > ¢ such that for each pair e,¢’ € E, C(e) < ¢ and C(¢) > ¢ implies
cost(e) < cost(e’).

4.3 Proof discussion

Our main result follows from Proposition 1 and Proposition 2, and we have already proven
the latter. In this section, we discuss the proof of the former. We begin by introducing
the concepts needed to state our key lemma, Lemma 3.

To begin, sometimes two records are equally informative in the sense that they are
associated with the same restricted domain. It is sometimes convenient to use a record
with a small collection of servings, and it is sometimes convenient to use a record with a
large number of servings. In our analysis, we restrict attention to the case that the small
collection consists of the cells of a partition and the large collection is the associated
subalgebra.

DEFINITION: Fix a setting. A (finite) record (S', o) is a (finite) partition record if S’ is
a finite partition. In this case, we often emphasize that the record is a partition record
by writing (P,«). We let Ap C S denote the subalgebra of S generated by P, and
for each i € N, we let a denote the subalgebra extension of oy (to Ap): the function
al 1 Ap — [0,1] such that for each S € Ap we have o] (S) = > (sepisicsy @S-

We can always use a partition record as a concise upper bound on the information
available to the mediator, in which case we conveniently have an equivalent subalgebra
record.

OBSERVATION: Fix a setting and let (S, a’) be a (finite) record. For each record (P, a)
such that (i) P is the collection of atoms in the subalgebra of S generated by &', and
(i) for each i € N and each S’ € ', a;(S") = ! ('), we have that (P, ) is a partition
record that is at least as informative as (', o).
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OBSERVATION:' Fix a setting. For each (finite) partition record (P, «), the record
(Ap, al) is equally informative: D(P, a) = D(Ap,al).

Our key idea is indexing the difficulty that the mediator faces at an information set
using the number of cake clones that he requires to solve the problem with no further
queries. For our purposes, it suffices to formalize this difficulty index only for two-agent
settings and partition records. To avoid confusion with agent clones, we refer to copies of
the cake as replicas, and we refer to the difficulty that the mediator faces as the partition
record’s deficiency level.

DEFINITION: Fix a setting with agents in N = {1,2} and an entitlement profile e € E.
For each partition record (P, a) and each level ¢ € N, we define the following.

e For each r € N, an (r|P)-hyperserving is a member of S,jp = (Ap)". The suggested
interpretation is that the cake is replaced by r identical replicas, with the property
that each serving in a replica is worth % of the associated serving in the original
cake, and the hyperserving (Si,Ss, ..., S,) consists of a serving from each replica
that is a union of partition cells.

o An (¢|P)-hyperallocation is a member of Xyp = U,eq1,2,..04Srip. For each X € Ayp,
we define the number of replicas for X, r(X), to be the unique r € {1,2, ..., ¢} such
that X € S,p. The interpretation is that the cake is replaced by r(X) replicas,
then agent 1 consumes X while agent 2 consumes the rest.

e For each i € N we define the hyperallocation extension of aZT (to Xyp): the function

T .
all: Xyp — [0,1] such that for each X € Xyp we have o] (X) = Z;(:)i) %
o We say that (P,a) is (-deficient if for each X € Ayp, either a] (X) < e; or
ol (X) > ey.

Observe that if (P, «) is 1-deficient, then no e-proportional protocol selects an allocation
at an information set whose record is at most as informative as (P, «).

As we use partition records as upper bounds for the information that the mediator
currently has, so too do we use ultraresponses as upper bounds for the information that
the mediator acquires.

DEFINITION: Fix a setting. For each valid partition record (P,«), each query q =
(i,K,S,p), and each p € D(P,a), we define the (q|u, P, )-ultraresponse, r(q|u, P, a),
to be the partition record (P*,a™) such that (i) P* is the collection of atoms in the
subalgebra of S generated by P U {S, Sq, }, and (ii) for each j € N, of = p;[p+. We
denote the collection of these ultraresponses by R(q|P, ) = {r(q|u, P, a)|p € D(P,«a)}.

We want to formalize the idea that if the mediator finds himself in a particularly
difficult situation, then for each query he might ask, there is a response that leaves him

'We caution that in general, if we are given a (finite) record (S, a’) and seek an equally informative
record with more entries, then by iteratively adding uninformative new entries for complements and
disjoint unions, we reach a record for the Dynkin system generated by S8’, and a record for the subalgebra
generated by S’ may be strictly more informative. Consider, for example, the interval cake and &’ =

{(%, g], (%, %]}: an associated appraisal generally does not allow us to deduce the value of (%, %}
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in a situation that is still rather difficult. Our key lemma establishes this for the special
case that the mediator’s query involves a cell of the current partition.

LEMMA 3: Fix a setting with two agents in N = {1,2} and let e € E. For each level ¢,
each valid partition record (P, «) that is (-deficient, and each q € Q such that the serving
argument of q belongs to P, there is (P*,a™) € R(q|P, «) that is | /¢/2]-deficient.

PROOF SKETCH: The proof (see Appendix 1) is largely constructive. In response to a
query about a cell B, one of the agents cuts B into two sub-cells B’ and B”, resulting
in P*, and these details do not matter. All that matters is one number: how much
of the value of B does the second agent assign to B’? The goal is to find a value v
answering this question such that for ¢t = L\/E/_ZJ, whenever the first agent considers
an (¢T|P*)-hyperallocation to be a candidate solution, the second agent rules it out.

Let us say an (¢7|P7*)-hyperallocation is B’-heavy if the first agent receives more
copies of B’ than B”, B"-heavy if the first agent receives more copies of B” than B’, and
balanced otherwise. The balanced (¢*|PT)-hyperallocations are ruled out because they
are equivalent to (£*|P)-hyperallocations and (P, «) is ¢(-deficient, high values of v rule
out B'-heavy (¢7|P*)-hyperallocations, and low values of v rule out B”-heavy (¢T|P)-
hyperallocations. The problem is therefore only interesting if there are both B’-heavy
candidates and B”-heavy candidates, as in this case we cannot simply rule out the only
candidates with an extreme response from the second agent.

The key argument is that in this case, the largest value that accepts a B’-heavy
candidate is less than the smallest value that accepts a B”-heavy candidates, so that
any intermediate value will do; this is Step 7 of the proof. Indeed, otherwise there are
a value v, a B’-heavy candidate X’, and a B”-heavy candidate X” such that with v
the second agent declares both X’ and X" acceptable. In this case, however, we show
that by appropriately replicating X’ and X", we can construct an (¢|P)-hyperallocation
that solves the problem and is equivalent to an (¢|P)-hyperallocation, contradicting that
(P, ) is (-deficient.

From here, Lemma 4 extends Lemma 3 to arbitrary queries, for which the mediator’s
selected serving and the cutter’s response together divide each existing cell into up to
three sub-cells, as in Cseh and Fleiner (2020). Loosely, the idea is to assign negligible
value to sub-cells so that it is almost as though one cell was divided into two sub-cells, so
that we can derive the desired conclusion from Lemma 3; see Appendix 2 for the details.

We complete the proof of Proposition 1 in Appendix 3. First, we use Lemma 4 to
establish the proposition for the two-agent case. Intuitively, if the entitlement profile has
a lot of precision, then the initial information set has a lot of deficiency, so since bad
responses can always keep deficiency relatively intact, an unlucky mediator may face a
long sequence of bad responses and remain unable to solve the problem. The one-agent
case is trivial, so to conclude we handle the case of more than two agents using the
two-agent result. Intuitively, we cannot have a protocol whose cost is too low relative
to the precision for more than two agents, because then could imitate that protocol for
one of the highest-precision agents in a two-agent setting where the other entitlements
are merged, contradicting our two-agent result. We emphasize that this argument relies
on precision instead of clonage because precision is defined at the agent level before it is
aggregated for the group, but clonage is defined only at the group level; this is why we
complete the proof of Theorem 1 by separately applying Proposition 2.
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5 Further results

5.1 Preference foundation for kitchen measures

What, exactly, are we assuming about an agent’s preferences when we assume they have
a kitchen measure representation? We provide an axiomatic answer to this question by
modifying a classic result of Savage (1954), replacing one of Savage’s technical axioms
with two new axioms involving the knife block.

To begin, an agent’s preferences are used to compare servings, and we assume that
they satisfy some basic conditions that are necessary to admit a probability measure
representation. In particular, we assume that the preferences form a qualitative probability
(Bernstein, 1917; de Finetti, 1937; Koopman, 1940), an object originally interpreted as
beliefs about the relative likelihood of uncertain events.

DEFINITION: Fix a kitchen and let 7Z be a binary relation on §. We say that =~ satisfies

e order if 77 is complete and transitive;

e separability if for each triple A, B, S € S such that ANS = BN S = (), we have
Ax Bifandonly if AUS =~ BUS;

e monotonicity if for each pair A, B € S, A C B implies B 7~ A; and
e non-degeneracy if there are A, B € § such that A > B.

We say that = is a qualitative probability if it satisfies all of these axioms.

Of these axioms, the most substantial assumption for cake division is separability.
Indeed, this implies that given three equivalent slices, two chocolate and one vanilla, any
union of a pair of these slices is equivalent: chocolate-vanilla is no better or worse than
chocolate-chocolate.

There are qualitative probabilities without probability measure representations (Kraft,
Pratt, and Seidenberg, 1959). In order to guarantee probability measure representation,
Savage (1954) introduced the following technical axioms.

DEFINITION: Fix a kitchen. We say that a qualitative probability - satisfies

o finenessif for each A € S such that A > (), there are m € N and (By)sc1,2,....m} € S™
such that (i) {By, Bs, ..., B,y } is a partition of C, and (ii) for each t € {1,2,...,m},
we have A - By; and

e lightness if for each pair A, B € S, if (i) for each A’ € § such that A’ > () and
ANA =0, we have AU A" = B, and (ii) for each B’ € S such that B’ = ) and
BN B =, we have BU B’ = A, then we have that A ~ B.

Savage’s result was originally stated for qualitative probabilities on power sets, and the
proof applies for qualitative probabilities on o-algebras, but our model involves qualitative
probabilities on algebras. We are therefore interested in the following generalization of
Savage’s theorem.!?

12For alternate axioms for qualitative probabilities on algebras, see Chateauneuf (1985) and Barbanel
and Taylor (1995).
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THEOREM WM (WAKKER, 1981; MARINACCI, 1993): Fix a kitchen. If a qualitative
probability 7~ satisfies fineness and tightness, then there is a probability measure pg such
that for each pair A, B € S, we have A 7 B if and only if po(A) > po(B). In this case,
1o is the unique such kitchen measure, and the range of p is a dense subset of the unit
interval.

We seek the stronger conclusion that preferences are represented by a kitchen measure,
and accordingly introduce two axioms that correspond to the two conditions for kitchen
measures.

DEFINITION: Fix a kitchen. We say that a qualitative probability - satisfies
e sliver nullity if for each S € S, we have S ~ () if and only if S € §°; and

o knife continuity if for each k € K and each A € S, both {t € [0,1]|A T K¢} and
{t € [0,1]|k; = A} are closed.

The first axiom requires no explanation. The second axiom requires that each knife is
a continuous function from the unit interval to the collection of servings when the latter
is associated with the coarsest topology for which upper contour sets and lower contour
sets—that is, sets of the form {B € S|B 7z A} and {B € S|A - B}, respectively—are
closed. In other words, each knife is a path from the empty serving to the entire cake,
and moreover one that is monotonic with respect to set inclusion.

It follows from Theorem WM that Savage’s axioms and our new axioms are together
sufficient for kitchen measure representation, and it is not too difficult to show that they
are also necessary. Less obvious, however, is that tightness is implied by the other axioms.

THEOREM 2: Fix a kitchen. A qualitative probability - satisfies fineness, sliver nullity,
and knife continuity if and only if there is a kitchen measure po such that for each pair
A,B € S, we have A 7z B if and only if po(A) > po(B). In this case, g is the unique
such kitchen measure.

The proof is in Appendix 4.

5.2 The mediator and the adversary

We conclude by investigating some strategic considerations raised by our formalization
of protocols as pure strategies.

We begin by discussing a game for which the strategic analysis is not so interesting.
Recall that in the game from Section 3.4, an indifferent nature makes an unobserved choice
of measure profile and thereafter the mediator is the only player. If we replace nature
with an adversary whose ranking of outcomes is the opposite of the mediator’s, then we
can directly apply our analysis of the optimal protocol with a different interpretation:
we analyze the strategy that is optimal for the mediator when the adversary selects
his strategy after observing the mediator’s. Unfortunately, repeating this exercise for
the adversary yields little guidance: all strategy profiles are equivalent, because after
observing the adversary’s choice of measure profile, the mediator will immediately produce
an e-proportional allocation. Altogether, we have an example of a two-player zero-sum
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game with neither a (pure strategy) value (von Neumann, 1928) nor a (pure strategy)
Nash equilibrium (Nash, 1951). This is a familiar phenomenon; a classic example is
Matching Pennies.

There is, however, a natural variant of the preceding game for which the strategic
analysis is more interesting. In particular, consider the perfect information game where
iteratively the mediator poses queries and the adversary responds.

DEFINITION: Fix a setting. For each e € E, the adversary game given e is the two player
game defined as follows.

e There are two players: the mediator and the adversary. There are also histories
partially ordered by precedence, as well as active players and actions associated
with non-terminal histories and payoffs. The precedence order is such that each
history and action at that history together determine an immediate successor, or an
earliest history that follows. We define these remaining ingredients below, defining
precedence entirely using immediate successors. The game has perfect information:
all information sets are singletons.

e A history is odd if it is non-terminal with an even number of predecessors, and
even if it is non-terminal with an odd number of predecessors. The initial history is
odd. At each odd history, the active player is the mediator and the set of available
actions is Q U X'. If the mediator selects a query, then the immediate successor is
non-terminal. If the mediator selects an allocation, then the immediate successor
is terminal.

e At each even history, the active player is the adversary. Necessarily, the previous
action was some query ¢, and the adversary must select a response: the set of
available actions is {r(q|u)|x € D}. Regardless of the adversary’s action, the next
history is non-terminal.

e Fach odd history A is identified with the finite sequence of actions that leads
to h from the initial history: there is a (query) count ¢ € Ny such that h =
(q1,r1,d2,r2, ..., Ges re). In this case, the h-domain is D(h) = Meq12,...D(r), where
by convention ¢ = 0 implies D(h) = D.

e A play is a maximal chain of histories. If a play ends at a terminal history after odd
history h with query count ¢, and if the allocation X selected by the mediator has
the property that for each u € D(h) we have that X is (e|u)-proportional, then the
mediator’s payoff is —c; otherwise it is —oo. Observe that at an odd history h with
query count ¢, if D(h) = () because the adversary’s responses are inconsistent, then
the mediator can receive payoff —c by selecting any allocation. The adversary’s
payoff is the negative of the mediator’s payoff.

For each player, a (pure) strategy is a function that associates each history at which he
is the active player with an action available at that history. We let >.,,, denote the set
of strategies for the mediator and let ¥, denote the set of strategies for the adversary.
Finally, for each strategy profile (o,,, 0,) € ¥, X3, we let P(o,,, 0,) denote the associated
payoff to the mediator, which the mediator seeks to maximize and the adversary seeks to
minimize.'3

13We use payoffs instead of utilities to emphasize that we are not considering randomization: the
payoffs are not derived from preferences over lotteries and we are not considering mixed strategies.
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We are interested in analyzing the adversary games using the classic notions of value
(von Neumann, 1928) and equilibrium (Nash, 1951).

DEFINITION: Fix a setting, let e € E/, and consider the associated adversary game.

o Ifsup, . inf,.es, P(0n,04) = infs,ex, sup, cx, P(0m,04), then this is the game’s
value; otherwise the game has no value.

o A strategy profile (o,,,0,) is a (pure strategy) Nash equilibrium if (i) for each o], €
Yom, P(om, 04) > P(0!,,0,), and (ii) for each o/, € ¥, P(opm,0,) < Plo,,0h).

In each adversary game, each player has an infinite set of strategies without any
further mathematical structure that the payoff function is required to respect. While it
is possible to guarantee that such a game has a value if the payoff function is concave-
convexlike (Fan, 1953; Sion, 1958), that is not the case here, and we are aware of no
general theorem that guarantees the adversary games have values. Fortunately, we can
do so using our earlier analysis.

THEOREM 3: Fix a setting and let e € E. If all entitlements are rational, then the game
has a value and this value is achieved in a Nash equilibrium. If there is an irrational
entitlement, then the game’s value is —oco but the game has no Nash equilibrium.

The proof is in Appendix 5. The first conclusion follows directly from the existence of
a bounded protocol when all entitlements are rational (Steinhaus, 1948), but the second
conclusion does not follow directly from our result that there is no bounded protocol
when some entitlement is irrational (Corollary 1): for each cost we must construct an
adversary strategy that guarantees that cost, and for this we require our deeper insights
about deficient partition records and ultraresponses (Lemma 4).

Theorem 3 reveals that so far as value and equilibrium are concerned, any adversary
game with an irrational entitlement is effectively a one-player game: the mediator is
effectively a dummy player and the adversary can effectively select any cost ¢ € N to
transfer to himself from the mediator. In this way, we can articulate the idea that this is
a hard problem for the mediator using classic notions from game theory without appealing
to randomization.

Appendix 1

In this appendix, we prove Lemma 3. To do so, we first prove Lemma 2, which provides
a convenient description of when a record is an ultraresponse.

LEMMA 2: Fix a setting. For each valid partition record (P, «), each query q = (i, k, S, p),
and each record (P*,a™), (P*,a") € R(q|P,a) if and only if it satisfies the following
conditions.

e Cut compatibility. There is u € D(P, «) such that (i) P* is the collection of atoms
in the subalgebra of S generated by P U{S, Sq,,, }, and (i) o (Sq) = p- ;" (S).

e Appraisal compatibility. For each j € N and each A € P, Z{BGPﬂBgA} oz;-L(B) =
O[j(A).
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o Sliver compatibility. For each j € N and each A € Pt oz;r(A) = 0 if and only if
Ae Se.

PrOOF: It is straightforward to verify that the conditions are necessary using Lemma 1;
we omit the argument. To see that the conditions are sufficient, assume the hypotheses
and let u be the member of D(P, «) promised by cut compatibility.

First, we construct ¢* € D. Indeed, fix j € N. We define yj : & — [0,1] to be

such that for each A € S, pi(A) = X peprso of (B) - %, which for emphasis does
not involve division by zero because B € PT\S° implies p;(B) > 0. By null slivers,
appraisal compatibility, and the fact that (P,a) is valid, we have 3 p pi\ o of (B) =
> pept @ (B) = X 4epj(A) = 1, s0 pj is a convex combination of probability mea-
sures that satisfy knife divisibility, from which it is straightforward to show that p is a
probability measure that satisfies knife divisibility. Moreover, since y; satisfies null slivers
and oz;r satisfies sliver compatibility, thus i} satisfies null slivers. Altogether, then, u} is
a kitchen measure. Since j € N was arbitrary, thus p* € D, as desired.

To conclude, we prove that p* € D(P, «). To begin, by definition of 1, the fact that
each member of P+ is either contained in Sg,, or S\Sq,, sliver compatibility, and the
definition of subalgebra extension, respectively, we have

piSg) = Y ar(p). P00
BT 1:(B)

D)

{BEP+\5°|BC Sy, }

- Y aw

{BEP+|BCS, ., }

= O‘;M(SQ\M)'

By the same argument we have (S\Sq,) = ;1 (S\ S ), 50 by the additivity of both

pr and o T we have p5(S) = o 7(S). Thus by cut compatibility, we have

M:(SCHM) = a:rT(SCﬂMi)
=p-a(9)
=p- ().
Moreover, fix t € [0, 7(q|u;)). First, by definition of 7(q|u;) we have SNk € S, so for
each B € P we have 1 ((SN k) N B) < pf(Sqiu N B). Second, by definition of 7(q|u;)
and Lemma 1 we have ;(S N ky) < p- pi(S) = pi(Sq|y,), so there is B € P* such that
pi((S N k) N B) < pi(Squ, N B) and thus g7 ((S N k) N B) < pf(Sqiu, N B). Thus by
additivity of p;, we have p; (S N ky) < i (Sqiu) = p - i (S). Since t € [0,7(q|u;)) was
arbitrary, altogether we have Sq|,» = Sq,.,, from which it is straightforward to verify that
(P, at) =r(qlu*,P,a). B

We conclude this appendix by providing Lemma 3.

LEMMA 3 (RESTATED): Fix a setting with two agents in N = {1,2} and let e € E.
For each level ¢, each valid partition record (P, «) that is ¢-deficient, and each q € Q
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such that the serving argument of q belongs to P, there is (P, a™) € R(q|P, «) that is

| \/{/2]-deficient.

PROOF: Let ¢, (P, ), and q satisfy the hypotheses. Several concepts in this proof come
in pairs: we use 1 and 2 to distinguish the agents, ’ and ” to distinguish the two servings
in PT\P, and * to distinguish objects for the new partition from associated objects for
the starting partition. To complete the proof, we select an arbitrary kitchen measure
profile x from a nonempty set, then construct the desired (P, a™).

STEP 1: Introduce concepts and notation to be used for the remaining steps.

STEP 1A: Introduce preliminary notation, then construct (i) the servings B’ and B”,
(ii) the partition PT, and (i) the appraisal af . Moreover, proceed under the assumption
that B' and B" are not slivers.

First, we introduce preliminary notation. Define ¢+ = [/£/2], let s = |P| denote the
number of slices in P, and index the members of P by {A;};c(1,2,...,s—1; U{B} such that B
is the serving argument of q. Furthermore, denote all the arguments of q by (1, x, B, p1),
so that (re-indexing if necessary) q asks agent 1 to cut, and let 2 denote the other agent.
Observe that such a re-indexing is without loss of generality even though our notion of
hyperallocation does not treat agents symmetrically: for each level ¢/, a partition record
is ¢'-deficient before re-indexing if and only if it is ¢'-deficient after re-indexing. Define
v1 = p1 - a1(B), so that q effectively asks 1 to use k to construct a subset of B worth v;.

Second, we construct B, B”, Pt and ;. To begin, since (P,«) is valid, thus we
can select an arbitrary u € D(P, ); we remark that for the ultraresponse (P*,a™) that
we will construct, both P* and of will be consistent with ;. We define B’ = S, and
define B” = B\B'. If B' € §° or B” € §°, then for (P*,a%) = r(q|u, P,a) we have
D(P,a) = D(P*,at), from which the desired conclusion directly follows; thus let us
assume B’ ¢ §° and B” ¢ §°. Define P* = (P\{B}) U {B’, B"}, and observe that this
is indeed a partition. Finally, define af = 1 ]p+. Observe that by construction, (i) for
each A € P™\{B', B"} we have af (4) = a1(4), (ii) of (B") = vy, and (iii) of (B") =
af (B) — vy.

Finally, we highlight an abuse of notation: throughout this proof, we always use
the same notation for an appraisal, its subalgebra extension, and its hyperallocation
extension. For example, instead of distinguishing between o, afT, and afﬁ, we simply
write a for all three functions, with the particular function we are using determined not
by notation but by context.

STEP 1B: Introduce the possible values that 2 assigns to B’, their associated appraisals
and records, and related concepts.

First, we define the set of possible values that 2 assigns to B’ (given that neither B’
nor B” is a sliver), its supremum, and its closure. In particular, (i) define v*"P = ay(B),
(ii) define V' = (0, v®"P) to be the set of possible values that 2 assigns to B’, and (iii) define
V = [0,v%P]. Since B’ and B” are not slivers, thus B = B’ U B” is not a sliver, so as
(P, «) is valid we have that v*"P = ay(B) > 0.

Second, for each v € V we define (i) the P*-appraisal ay : P+ — [0,1], and (ii) the

record r,, as follows:
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e o} is defined by (i) for each A € PT\{B’, B"}, a4(A) = az(A), (ii) a(B’) = v, and
(iii) a$(B") = ay(B) — v, and
)

o r, = (P, (0417052 ).

Observe that by Lemma 2, for each v € V' we have r, € R(q|P, ). By contrast, for each
v € {0,v™"P}, r, is not valid because it assigns zero to a serving that is not a sliver, and
thus r, € R(q|P,a). Even so, it is convenient to use the values in {0,v*"P} for some of
our arguments.

STEP 1C: Introduce weights, lines, and candidates.

First, for each hyperallocation X € X+ p+, we write the value that 2 assigns to X as a
function of the value that he assigns to B’. In particular, for each X € X+ p+, we define

the weights w'(X),w"(X) € {0,1,...,7(X)} and the line Lx : V — [0, 1], as follows:

/

w'(X)={je{L,2,...r(X)}|B' C X;},

w'(X)=|{je{L,2,...,r(X)}IB" C X;}|, and

Lx(v) = ay(X)

325 as(X)\B)] 4 w'(X) - v [0 — e (X)
r(X) r(X)

We say that X is (i) balanced if w'(X) = w”(X), (ii) B'-heavy if w'(X) > w"(X), and
(ili) B”-heavy if w'(X) < w”(X). Observe that a balanced X has a flat X-line, a B'-heavy
X has an increasing X-line, and a B”-heavy X has a decreasing X-line.

Second, for each X € X+ p+, we say that X is a candidate if of (X)) > e;. To complete
the proof, we construct v* € V such that for each candidate X we have Lx(v*) =
oy (X) > ey, as this directly implies that r,« is £*-deficient. Intuitively, if 2 assigns such
a value v* to B’, then for each hyperallocation that is a candidate for being satisfactory in
the sense that 1 measures his own hyperserving to be worth at least his own entitlement,
the hyperallocation fails to be satisfactory because 2 measures 1’s hyperserving to be
worth more than 1’s entitlement—and thus measures his own hyperserving to be worth
less than his own entitlement.

STEP 2: For each balanced candidate X € Xy+p+ and each v €V, Lx+(v) > €.

Let X and v satisfy the hypotheses. For convenience, let us write r™ = r(XT),
af = af, w' = w'(XT1), and w” = w’(X"). Since Xt is balanced, thus v’ = w”.
Observe that r™ < (T = L\/K/_QJ < /.

Let X € Xyp with 7(X) = r* be such that for each j € {1,2,...,r"}, (i) j < o
implies X; = (X;\B) U B, and (ii) j > w’ implies X; = X;"\B. Then for each i € N,
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we have

a(X) =% @] +way(B)

T

+w'af (B") +w'a; (B")

)

- af(X;\Bq

- Z o

+w'af (B) + "o} (B")
—af(xX").

Since X is a candidate, thus we have a1 (X) = of (X*) > ey, so since (P, a) is (-deficient
we have Lx+(v) = ag (XT) = ap(X) > e, as desired.

STEP 3: For each B'-heavy candidate Xt € Xyt pr, Lx+(v5"P) > ey.

Let X satisfy the hypotheses. For convenience, let us write r* = r(X1), af =a ",
w = w(XT), and w” = w”(XT). Since XT is B'-heavy, thus v’ > w”. Observe that
rt <t =[V2] <t

Let X € Xyp with 7(X) = r* be such that for each j € {1,2,...,r"}, (i) j < o
implies X; = (X;\B) U B, and (ii) j > w' implies X; = X;"\B. Then for each i € N,
we have

n
e @i(X;\B) ,
j=1
e
[ @ (X \B) / / / "
= [ ]+ waf (B) +wia (B7)
j=1
(vt
Fon af (X;\B)
> [ YT e (B) + ' (B)

Moreover, since oy (B”) = 0, thus the inequality above holds with equality for agent
i = 2. Since X is a candidate, thus we have ay(X) > af (XT) > e, so since (P, a) is
(-deficient we have Lx+(v"") = az (XT) = ay(X) > ey, as desired.

STEP 4: For each B"-heavy candidate Xt € Xprjp+, Lx+(0) > ey.

The argument is the same as that for Step 3, except we use 0 instead of v*"P and we
transpose the roles of w’ and w”.

STEP 5: Construct v',v" € V such that

v' = min{v € V| for each B'-heavy candidate X, Lx(v) > e1}, and
v" = max{v € V| for each B"-heavy candidate X, Lx(v) > €1},
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and such that moreover v\ < v°*P and v" > 0.

Before we begin, we observe that if there are a B’-heavy candidate and a B”-heavy
candidate, then v is the largest value that accepts a B’-heavy candidate and v” is the
smallest value that accepts a B”-heavy candidate; thus these are the values mentioned in
the final paragraph of the proof sketch.

First, we construct v’. If there is no B’-heavy candidate, then define v = 0 and
we are done; thus let us assume there is a B’-heavy candidate. In this case, by Step 3,
for each B’-heavy candidate X, Lx is a strictly increasing line with L£x(vS"?) > ey, so
v(X) = min{v € V|Lx(v) > e} is well-defined and less than v*'P; thus as there are
finitely many B’-heavy candidates, v" = max{v(X)| X is a B’-heavy candidate} is well-
defined and satisfies the desired properties.

Second, we construct v”. The construction is analogous to the construction of v’,
using B”-heavy candidates and Step 4 instead of B’-heavy candidates and Step 3; we
omit the details.

STEP 6: Proceed under the assumption that there are a B’'-heavy candidate and a B"-
heavy candidate.

If there is no B’-heavy candidate and there is no B”-heavy candidate, then define

v* = 2 by Step 2, for each candidate X we have Lx(v*) > €1, so we are done. If there
is a B’-heavy candidate but there is no B”-heavy candidate, then define v* = ”ur%; by

Step 2 and Step 5, for each candidate X we have Lx(v*) > e1, so we are done. If there is
a B’-heavy candidate but there is no B’-heavy candidate, then define v* = ”7”; by Step 2
and Step 5, for each candidate X we have Lx(v*) > e, so we are done. Thus let us
assume there are a B’-heavy candidate and a B”-heavy candidate.

STEP 7: We have v/ < v".

Assume for contradiction that o' > v” and let v* € (v”,v"). Using the definitions of v’
and v”, it is easy to verify that there are B’-heavy candidate X’ € X+ p+ and B"-heavy
candidate X" € Xt p+ such that Lx/(v*) < e; and Lxr(v*) < e;. For convenience, let
us write 7’ = r(X'), " = r(X"), and af = ay .

Intuitively, we construct a hyperallocation that (i) consists of some copies of X’ and
some copies of X" (ii) involves a grand total of at most ¢ replicas, and (iii) includes the
same number of B’ slices and B” slices. This (¢|P*)-hyperallocation is equivalent to an
(¢|P)-hyperallocation that we refer to as X.

We begin by using X’ and X" to define the weight lists (w§)gep+ and (w%)sep+ and
the weight differences ¢’ and ¢”, then using these notions to define the number of replicas r
and the weight list (wg)sep+. In particular:

e for cach S € PT, wiy=|{j € {1,2,....r"}|S C XJ,‘H’

for each S € P+, w = |{j € {1,2,...,7"}S € X"},
e ) = [w’B/ — wgg,,]7
o V' = [wh, —wlh],

r=0"r"+6r", and
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e for each S € Pt, wg = §"wy + d'wi.

We use these objects to establish our contradiction. Intuitively, we construct a new
hyperallocation that consists of 6" copies of X’ and ¢’ copies of X”.14

Next, we make five observations. First, since ', 7" € {0,1,...,¢%}, thus for each
S € P we have wi, w’ € {0,1,...,£T}. Second, we have Y ¢ pr wyag (S) = Lx:(v*) < e
and Y- ¢opr whog (S) = Lxn(v*) < ey. Third, we have ¢',8”, ', 7" € {0,1, ..., £T} and thus
r € {0,1,...,2(¢%)?}, and moreover £T = |\/¢/2], so r € {0,1,...,¢}. Fourth, for each
S € P*, since wy € {0,1,...,7"} and w¥ € {0,1,...,7"}, thus wg € {0,1,...,7}. Fifth, we
have

1 " / / / 1
wB/ — [wB// - wB/]wB/ + [IUB, - wBN]wB/
" / " /
= WpnWpr — WpWpgn
1 " !/ !/ / "
= [UJB// - wB/]wB// + [wB/ — 'lUB//]wB//
= wprm.
Define wWp = wWpgr = Wpgr.

Finally, for each j € {1,2,...,r}, define X; = U{S € P|j < wg}. Since r < ¢, thus
X € Xyp. Using the above definitions and observations, for each i € N we have

a;(X) = Z —ai(j(j)

=1

- ZAeP\{B} wac;(A) n wpa;(B)

r r
 Daep\(ppry Wacy (A) N wpa; (B)

r T
_ Daepi\(B.B") wao (A) N wpof (B') + wpaf (B”)

r T
_ Laceryppn a0l (A) | wpal (B') + wprad (B')

r r
. ZAGPJF onzj(A)

T
_ Daeps (8"l + Swh)ay (A)
r
5" 2 aep+ Waoy (4) I 6/ZA673+ whay (A)
T r
_ (5”7’/ D aep+ Waoy (A) ' D aepr Wy (A)
- r ) 7,_/ + ( r ) ,r//
6//7.,/ . (5/7,,//

R - X/ o —|— X// )
(6///r/ + 5/7.//)&1 ( ) + (51/74/ + 5/7a//>Ck2 ( )

But then (i) since X’ and X” are candidates we have a;(X) > e, and (ii) since a5 (X') =
Lx:(v*) < ey and ag (X") = Lxr(v*) < e; we have as(X) < ey, contradicting that (P, «)
is (-deficient.

14We remark that at this point, an alternative path leads to a slightly tighter but less simple bound.
In particular, if we let g denote the greatest common divisor of 4’ and ¢”, then we could complete an

analogous argument by making only %/ copies of X’ and % copies of X”. We choose to pursue the
slightly looser but simpler bound.
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STEP &: Conclude.

By Step 7, we have v' < v”. Define v* = # First, by Step 2, for each balanced
candidate X we have Lx(v*) > e;. Second, using the definition of ¢', it is easy to verify
that for each B’-heavy candidate X we have Lx(v*) > e;. Finally, using the definition
of v, it is easy to verify that for each B”-heavy candidate X we have Lx(v*) > e;.
Altogether, then, for each candidate X we have Lx(v*) > ey, so r, is £T-deficient, as
desired. B

Appendix 2

In this appendix, we prove Lemma 4.

LEMMA 4 (RESTATED): Fix a setting with two agents in N = {1,2} and let e € E. For

each level ¢, each valid partition record (P, «) that is ¢-deficient, and each q € Q, there
is (PT,a") € R(q|P, «) that is | /¢/2]-deficient.

PRrROOF: Let ¢, (P,«), and q satisfy the hypotheses. To complete the proof, we select
an arbitrary kitchen measure profile p from a nonempty set, then construct the desired
(P*, o).

STEP 1: Introduce preliminary notation and select the kitchen measure profile p, then
construct the serving B' and the table T .

First, we introduce preliminary notation similar to that used in the proof of Lemma 3.
Define (* = [/£/2], let s = |P| denote the number of slices in P, and index the members
of P by {A;}jeq1,2,..5)- Denote the arguments of q by (1, x, B, p;), so that (re-indexing if
necessary) q asks agent 1 to cut, and let 2 denote the other agent; such a re-indexing is
without loss of generality as argued at the start of the proof of Lemma 3.

Second, we construct a table of servings, each given by a row and a column, and from
this table we construct P*. We take P to be the set of rows. Since (P, «) is valid, thus
we can select an arbitrary u € D(P, «); we remark that for the ultraresponse (P, a™)
that we will construct, P+ will be consistent with j; while o will be constructed by
modifying ;. We define B’ = S;,,,, we define the set of columns C = {B’, B\B', C\ B},
and we define the table T = {ANA'|A e P, A € C}.

Finally, we highlight an abuse of notation: as in the proof of Lemma 3, we always
use the same notation for an appraisal, its subalgebra extension, and its hyperallocation
extension.

STEP 2: Index the table entries, then introduce cutter appraisals and split rows.

First, we index the table entries. In particular, for each j € {1,2,...,;s}, we define
(i) B; = A;N B, (i) Bf = A;N(B\B'), and (iii) B)" = A; N (C\B).

Second, let us say that a function o : 7 — [0, 1] is a cutter appraisal if it satisfies the
following requirements:

e Each row’s value according to agent 1 is distributed across its entries: for each row
j € 11,2, 5}, a(B) + a(B!) + a(BY) = a1 (4,).
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e No sliver is assigned any value: for each S € T NS°, a(S) =0.

e The ratio of the value in the first column to the value in the first two columns is
precisely the target proportion: > 5 | a(B}) = py - (3_j_[a(Bj) + a(BY)]).

Let A denote the collection of cutter appraisals. Observe that a cutter appraisal need
not be the restriction of a kitchen measure to 7 because it may assign zero to a serving
that is not a sliver.

Finally, for each o« € A and each j € {1,2,..., s}, we say that row j is a-split if «
assigns positive value to at least two j entries: [{B € {Bj}, B}, B}’ }|a(B) > 0}| > 1.

STEP 3: Construct o] € A such that (i) there is at most one af -split row, and (ii) no
value is assigned to the third column.

There are many ways to construct the desired o ; what follows is simply one concrete
example. We begin with y [+ € A, then apply our ROW POLARIZATION procedure to
construct a cutter appraisal o’ with at most one af’-split row, and finally modify o} to
reach the desired o .

Formally, the ROW POLARIZATION procedure begins with [+ € A as the input to
the first stage. At each stage, if the input o € A is such that there is at most one a-split
row, then the procedure terminates with af = «; otherwise, it constructs the output
o/ € A that serves as the input to the next stage as follows.

e Let j; denote the smallest index {1,2, ..., s} of an a-split row and let jo denote the
largest such index. Since there are at least two a-split rows, j; # Jjo.

e Define S;ov ¢ and S$™* in row j; as follows:

— If Oz(B}l) > (0 and o[(B’/) > 0, then Ssource _ B// and Ssmk B/
— Else if a(Bj,) > 0 and a(B}/) > 0, then S;**"** = B}/ and S{"** = Bj .
— Else Oé(Bﬁ) > (0 and OZ(B”/) > O and we define Ssource — B// and Ssznk B///

Observe that transferring value from S5 to S$"* increases the ratio of the value
in the first column to the value in the first two columns.

e Define S5°¢ and S5 in row j, as follows:

— If a(Bj,) > 0 and «(BY,) > 0, then 55>’ = B), and S5"* = B],.
— Else if a(Bj,) > 0 and a(B}!) > 0, then S5’ = B}, and S;"** = BJ.
— Else a(Bf,) > 0 and a(Bj}) > 0, and we define S3°"** = B}’ and S35""* = By .

Observe that transferring value from S3°7¢ to S5 decreases the ratio of the value
in the first column to the value in the first two columns.

e For each value transfer rate A € R, define oy : T — [0, 1] as follows: (i) for each
S c T\{Ssource Ssinkz Ssource Ssinkz}7 Oé)\(S) = OC(S), (11) a)\(Sfource) = Oé(Sfourc'e)_]_7
(111) O[)\(Ssznk) (Ssmk) + 1 ( ) A(s;ource) = a(Sfource) . /\7 and (V) Oé)\(SSan) =

(Ssmk) + .
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e Let A* be the unique A € Ry such that 37, ax(B}) = pi- (32, [an(B]) +ax(B])]).
It is easy to verify that A\* is well-defined, that \* is greater than zero, and that \*
can be explicitly constructed in cases given by the sinks and sources; we omit the

details.

e Define v = min{a(S5°7), = - a(S5°7“)}, and define o/ : T — [0,1] as follows:
(l) for each S € T\{Sisource Ssmk’Ssource’Ssmk}> Oé( ) = C((S), (11) Ckl(sisource) =
a(Sfource) — v, (111) (Ssznk) = (Ssznk’) + v, (IV) al(S;ource) = a(Sfource) —\ v
and ( ) (Ssznk) (Ssznk) + 2F

Intuitively, A* is the rate such that if we simultaneously and continuously transfer value
(i) from source to sink in row j; at a rate of one unit per second, and (ii) from source to
sink in row j, at a rate of \* units per second, then we preserve the ratio of the value in
the first column to the value in the first two columns. We do so until one of the sources
is drained of all value; necessarily o/ belongs to A.

Observe that the ROW POLARIZATION procedure must terminate with of’. Indeed,
at each stage for which the input and output differ, the output has more zero value
assignments than the input, and the number of zero value assignments cannot exceed the
total number of servings in the table.

Finally, we define a] by modifying o/ as follows: in each row j € {1,2, ..., s}, transfer
p-a(B]") from B} to B} and transfer (1 —p)-a(B]") from B}’ to Bf. It is easy to verify
that the result has the desired properties.

STEP 4: Conclude.

First, we use a] to construct an associated (P*,a*) that is £*-deficient. If there are
no af -split rows, then we simply take (P*,a*) = (P,«a). Otherwise, (i) let j* be the

index of the unique o] -split row, (i) define p} € (0, 1) to be that row’s ratio of the value
af (Bl)

in the first column to the value in the first two columns, p; = T +ZYT( B which for
51
emphasis does not involve division by zero as j* is aJ -split, (iii) let q* (1 K, Aj, p}),

and (iv) let (P*, a*) be the ¢*-deficient member of R(q*|P, ) promised by Lemma 3 and
constructed in its proof. In the latter case, there is A’. € P*\P such that

aj(A}.) = pi - o (454)

al B/ ! " "
[ ) + o] (B )} : [ho(Bj*) + alT(Bj*) + 0‘1T(Bj*)]
[ T al fal (B// )} ) [O‘Z—(B;*) + QT(B;/*) + 0]
=y ( )

Define A%, = A;-\Al..

Second, we define f : P* — T such that for each S € P*, ai(S) = o (f(S)). First,
for each j € {1,2,...,s} that is not o] -split, (i) aj(A;) = 0 implies f(A;) is the leftmost
(as written here) member of { B, BY, B}"} that is not empty, and (ii) aj(A;) > 0 implies
f(A;) is the unique B € {B, Bj} such that aj(B) > 0. Second, A’ € P* implies
f(AL) = B. and AJ. € P* implies f(A}.) = Bj.. It is straightforward to verify that f
satisfies the desired property.
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Third, we construct a : 7 — [0,1] such that for each S € P*, ai(S) = aF (f(9)).
First, for each S € P*, define o (f(S)) = a3(S). Second, for each S € T\ f(P*), define
al (S) =0.

For intuition, at this point we illustrate that if (7, a], aJ ) belongs to R(q|P, a), then
we are done. Indeed, assume the hypothesis, let X € X+, and consider the associated
hyperallocation X" € Xy+p~ with 7(X’) = r(X) such that for each r € {1,2,...,r(X’)},
X, =U{f(9)|S € P*,S C X,}. In other words, X assigns each serving S to the agent to
whom X, assigns f(.5). Then (i) by ¢*-deficiency of (P*,a*), af(X) < ey or a3(X) > ey,
and (ii) for each i € N, we have o] (X,) = af(X/); thus af (X,) < e; or aj (X,) > e;.
Since X € Xj+7 was arbitrary, we are done.

The proof is not yet complete because (T,a],a]) need not belong to R(q|P, ).
Most importantly, a] and o may violate sliver consistency by assigning zero to servings
that are not slivers. To complete the proof, we modify (7,a],aJ) by moving a ‘tiny’
amount of value into these servings, then (if necessary) discarding any empty entries in
T so that we have a partition record. It is straightforward to verify that this can be done
such that the result is an ¢*-deficient ultraresponse, which completes the proof; the final
three paragraphs provide an explicit construction for the interested reader.

To define tiny, we construct ¢ > 0. Since (P*,a*) is ¢*-deficient, thus for each
X € Ayt yp-, either of(X) < e; or az(X) > ey, so the associated deficit

§(X) = min { max{0, e; — @i (X)}, max{0, e; — ox;(X)}}

is positive. First, define &5 = [minyex,, ,. 6(X)] - + - 7= - 3, and observe that g5 > 0.
Intuitively, no shortage of an (¢*|P*)-hyperallocation can be overcome by giving each
agent a bonus of €5 for each of the 3s table entries in each of ¢* replicas. Second, define
er = min[({a1(9)]S € THU {a2(S)|S € T}H\{0}]- 5 - 5. Intuitively, for each agent ¢ and
each table entry S that o] assigns positive value, it is possible to transfer e7 from S to
a second entry in that row, and then again to a third entry in that row, without draining
all value from S. Finally, define ¢ = min{es,e7}. Observe that ¢ > 0.

Next, we use ¢ to construct (P, a®) € R(q|P,a) from (T,a”). First, for each
i € N, we construct o © : T — [0,1] from o] by doing the following for each row
j€{1,2,..,s}: (i) define S;*" = {B € {Bj, B}, B]'}|a] (B) > 0}, (ii) define ;"% =
{B e {Bj},B},B}'}|B ¢ S;*"** and B ¢ §°}, (iii) for each S € §7"*, define al 7(9) =¢,

(iv) for each S € 87", define ol 7(8) = o] (S) - %, which for emphasis does not
J

involve division by zero because we only call this definition when S°*"“¢ is nonempty, and

(v) for each S € {B}, B}, B} that does not belong to §;°*"* U S5"* define ol T(9) =
o7 (S). Finally, we define P* = T\ {0}, and for each i € N we define o = o] "[ps.
Finally, we claim that (P™,a™) € R(q|P,«) is {T-deficient. First, by Lemma 2
we have (P*, o) € R(q|P,a). Second, let X € Xpp+, and consider the associated
hyperallocation X’ € Xyt p- with 7(X’) = r(X) such that for each r € {1,2,...,r(X’)},
X = U{f(9)|S € P*,S C X,.}. In other words, X/ assigns each serving S to the
agent to whom X, assigns f(S). Then (i) by definition of ¢, there is ¢ € N such that
3slte < e; — af(X’), and (ii) for each i € N, we have o] (X,) = af(X); thus there
is i € N such that 3s¢te < ¢; — ] (X). Moreover, for each i € N and each S € T,
al 7(S) < af (S) + ¢; thus as there are 3s members of 7 and r(X) < £*, there is i € N
such that ez—aTJ“(X) > e;—a] (X)—3slte > 0. Finally, e;—aj (X) = e,—ozT+(X) > 0.
Since X € Xj+|7 was arbitrary, we are done. B
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Appendix 3

In this appendix, we prove Proposition 1.

PROPOSITION 1 (RESTATED): Fix a setting. For each e € F and each precision level
p € N, P(e) > p implies cost(e) > |log, log, 2p].

Proor: We first establish the proposition for two-agent settings, then conclude.
STEP 1: Prove the proposition for two-agent settings.

Fix a two-agent setting, let p € N, and let e € E be such that P(e) > p. Since
P(e) > p, thus there is i € N such that P;(e) > p; denote the other agent by j. Finally,
let m € I1,.

We begin by introducing some preliminary concepts. First, we say that each h € H
is 0-deficient. Moreover, for each h € H and each level ¢ € Ny, we say that h is (-
deficient if there is a valid (-deficient partition record (P, «) such that D(h) D D(P, «).
Second, define the initial level ¢y = p, and for each query count ¢ € Ny define the level
lev1 = |\/Le/2]. Finally, for each ¢ € Ny and each p € D, define h.(u) € H U {error} as
follows: (i) if ¢ < cost(u), then h.(u) is the history in the play determined by p and 7
whose query count is ¢, and (ii) otherwise h.(u) = error.

We claim that for each ¢ € Ny such that ¢, > 1, there is u € D such that for each
de{0,1,...,c+ 1}, ho(n) € H and h(p) is ¢o-deficient. We proceed by induction. For
the base step, since P;(e) > p, thus e; cannot be written as a fraction whose denominator
is at most £y = p, so the unique valid partition record for partition {C'} is fy-deficient,
so for each p1 € D we have that ho(p) is fo-deficient; thus the claim holds for ¢ = 0.
For the inductive step, let ¢ € Ny be such that the claim holds with measure profile
w. If by < 1 then we are done, so assume /.,; > 1. By the inductive hypothesis,
hey1 () is £.p1-deficient, so there is a valid £.41-deficient partition record (P, «) such that
D(hei1(pn)) 2 D(P, ). Since l.1 > 1, there is no X € X such that for each p € D(P, ),
X is (e|p)-proportional; thus since m € Il., necessarily m(h.i1(p)) is a query q. By
Lemma 4, there is ¢/ € D(P, «) such that the ultraresponse r(q|u', P, «) is |\/les1/2]-
deficient, or equivalently (. o-deficient. Since ¢/ € D(P, ) C D(hey1(pe)), thus p and
share the same ¢ + 1 queries and responses. Altogether, then, the claim holds for ¢ + 1
with measure profile 1/, so as ¢ € Ny was arbitrary we are done.

To conclude, define ¢* = max{c € Ny|p > 22°71}, which is well-defined since p > 1.
We claim that for each ¢ € {0,1,...,¢*}, l. > 92 =1 We proceed by induction. For the
base step, £y = p > 22° 1 as desired. For the inductive step, let ¢ € {0,1,...,¢" — 1}
be such that £, > 22 L Then Loy = |\/0./2] > [V/22 1/2] = |[V227 2| =
(22771 = 927 -1 g the claim holds for ¢ + 1. Since ¢ € {0,1,...,¢* — 1}
was arbitrary, we are done. In particular, we have that /. > 1, so by the previous
paragraph there is p € D such that hey1(n) € H, so cost(m|u) > ¢*, so cost(m) > c*.
Since m € TI, was arbitrary, thus cost(e) > ¢*. Finally, by definition of ¢* we have that
c* > |log, log, 2p]. Altogether, then, we have cost(e) > |log, log, 2p], as desired.

STEP 2: Conclude.

Assume, by way of contradiction, there is a setting (C, K, N') for which the proposition
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does not hold: there are p € N, e € E with P(e) > p, and 7 € II, such that for each u € D,
cost(m|p) < [log,log,2p|. For each setting with one agent, each entitlement profile’s
precision index is 1 and thus the proposition holds vacuously, so n # 1. Moreover, for
each setting with two agents, the proposition holds by Step 1, so n # 2. Altogether, then,
n > 2. We refer to (C,K, N) as the large setting. Since P(e) > p, thus there is i € N
such that P;(e) > p. Select j € N\{i} and define N' = {i,5}. We refer to (C,K, N')
with |N'| = 2 as the small setting.

Since our notation suppresses the setting while the following argument involves two
settings, we simply use ’ to distinguish objects for the small setting from the associated
objects from the large setting—for example, writing E for the large setting and E’ for
the small setting.

To complete this step, we prove that the proposition does not hold for the small
setting, which contradicts Step 1. More precisely, define ¢’ € E' by (e;, €}) = (e;, 1 — €;).
By construction, P'(e’) = P(e) > p. We claim that cost’(¢’) < |log,log, 2p], which we
establish by exhibiting a protocol 7" € II’, such that cost(n’) < |log, log, 2p|. Intuitively,
the protocol n’ that we exhibit imitates 7 in a suitable sense.

We begin by introducing some objects that we use to construct 7/. First, select a
guess function g : 2°\{0} — D’ that selects from each nonempty domain D* C I a
guess g(D*) € D*. Second, define D' = {u € DJ for each pair k, k' € N\{i}, ux = pp'},
and define the extension function € : D' — D' be such that for each ' € I/, £(y') is the
p € D' such that (i) p; = pj, and (i) for each & € N\{i}, ux = pj. Finally, for each
c € Ny and each p € D, we define h.(w|n) € H U {error} as follows: (i) if ¢ < cost(n|u),
then h.(m|p) is the history in the play determined by g and m whose query count is c,
and (ii) otherwise h.(m|u) = error.

Next, we construct #’. In particular, for each A’ € H’, (i) let ¢ denote the query count
at h', (ii) define the guess g’ = g(ID'(k')), (iii) define the guess extension g = £(g’), and
(iv) define 7'(h') € Q" U X' in three cases as follows.

o If ¢ < cost(m|g), then 7(h.(w|g)) € Q. If the cutter of this query belongs to N’,
then define 7/(h’) to be the same query; otherwise define 7’(h’) to be query formed
by taking this query and then making j the cutter.

e If ¢ = cost(r|g), then define X = out(n|g), let ©'(h') € X’ be defined by X| = X;
and X} = O\ X], and define 7'(h’) = X'. Since 7 € I, thus X is (e|g)-proportional,
from which it follows that X’ is (¢’|g’)-proportional.

e If ¢ > cost(m|g), then A’ will ultimately be off-path. For concreteness, set 7’(h') € X’
to be the allocation at which agent ¢ receives the entire cake.

Observe that since 7" assigns the same action to any two histories with the same chronicle,
as each history’s guess only depends on its chronicle, thus 7" is indeed a protocol. For
each ¢ € Ny and each y/ € I/, we define hl(7'|p') € H' U {error} analogously to the
associated notation for 7.

Claim. Fix an arbitrary true measure profile t' € D'. Let us write t = £(t'), and for
each ¢ € Ny let us write k., = hL(7'|t'), g. = g(D'(R)), g. = E(g.), h = h.(x|t), and
h& = h.(m|g.). We claim that for each ¢ € Ny such that h., € H', we have

e hf € H and h& € H,
e D(h) =D(hE), and
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o D(AY)ND' = E(DV(LL)).

Proof of Claim. We prove the claim by induction on the query count, and the base step
¢ = 0 is trivial; thus let us make the inductive hypothesis that the claim holds for ¢ € Nj.
If b, , = error then we are done; thus let us assume h.,, € H’, in which case 7'(h)) € Q'.
Then by construction of «’, h& € H and w(hg) € Q, so h¥,, € H. Moreover, (i) since t’
and g/ both belong to I'(h.), thus by the inductive hypothesis t and g. both belong to
D(ht), and (ii) g. belongs to D(hE); thus necessarily D(hL) = D(hE).'> Altogether, then,
m(hi) = w(h&) € Q, so h;,, € H. This establishes the first conclusion, from which the
second conclusion follows by definition of g.,1. To conclude, define q = w(h) = 7 (hg) and
define g’ = 7’(h). Using the definition of 7', it is straightforward to verify that whether
or not the cutter of this query belongs to N’, we have E(r'(q'|t')) = r(q|t) N D, which
together with the inductive hypothesis directly implies the third conclusion. Altogether,
then, the claim holds for ¢ + 1, so as ¢ € Ny was arbitrary we are done.

Proof from Claim. To conclude, let t' € I'. Define t = £(t'), define X’ = out(n'|t)
and define X = out(n|t). We claim that cost’(7'|t') < |log,log,2p| and X' is (€/|t')-
proportional. Indeed, by our hypotheses about m, we have that cost(r|t) < |log, log, 2p],
X e X, and X is (e |t) proportional. By our Claim and the definition of 7/, the sequence
of actions in the play determined by 7" and t" is formed from the sequence of actions in the
play determined by 7 and t by (i) taking any query whose cutter does not belong to N" and
making its cutter j, and (ii) replacing X with the allocation X’ € X such that X = X.
Then cost/(7’|t') = cost(n|t) < [log,log, 2p|. Moreover, since X is (e|t)-proportional,
thus t}(X;) > e; = €}; it directly follows that X’ is (¢/|t’)-proportional. Since t' € D' was
arbitrary, thus 7’ € II’, and cost’(7’) < |log, log, 2p |, so cost’(e') < |log,log, 2p|. But
then the small setting is a two-agent setting for which the proposition does not hold,
contradicting Step 1. l

Appendix 4

In this appendix, we prove Theorem 2.
To begin, the following lemma gathers two slight extensions of exercises in Savage
(1954); the proof is omitted.

LEMMA 5: Fix a kitchen and a qualitative probability. We have the following.

e For each A € S and each pair B, B’ € § such that B, B’ C A, we have B 7 B’ if
and only if (A\B') 7 (A\B).

e For each four A, A", B,B' € §,if (i) ANA" =0, (ii) Az B, and (iii) A’ 77 B, then

) A
(AUA") = (BUDB'). IfmoreoverA»B then(AU Ay~ (BUDB).

We first establish that under the classic qualitative probability axioms, knife continu-
ity is stronger than tightness.

5Indeed, this follows from two observations: (i) if the domains of two histories intersect, then they
are nested, and (ii) if the domains of two histories are strictly nested, then their query counts are not
the same.
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ProprosiTION 3: Fix a kitchen. If a qualitative probability satisfies knife continuity,

then it satisfies tightness. Moreover, for each each x € K and each pair C*, A € S such
that C* 72 A, there is t € [0, 1] such that (C* N k) ~ A.

PROOF: Let = satisfy the hypotheses and let x € K.
STEP 1: For each A € S, there is t € [0, 1] such that x; ~ A.

Let A € S, define T = {t € [0,1]|x; Iz A}, and define T~ = {t € [0,1]|A Z K }. By

knife continuity, Tt and T~ are closed, and by completeness TT U T~ = [0,1], so since
[0, 1] is connected there is t € TT NT~, and necessarily x; ~ A, as desired.

STEP 2: For each pair C*;A € S such that C* = A, there is ¢t € [0,1] such that
(C* N K?t) ~ A.

Let C*, A € S such that C* 7 A. To ease notation, for each = € [0,1], we define
k= (C* N k). We use z to index cuts of C* and y to index cuts of C; thus we write
{K3}eep,) and {Ky}tyep)-

To begin, define z* = inf{x € [0,1]|s% = A} and 27 = sup{x € [0,1]|A ZZ ki}; by
knife continuity, monotonicity, and separability, both < and x~ are well-defined. By
completeness, we have = > x*, and if x7 > % then for z = % we have k! ~ A
and we are done; thus let us assume 7 = 2. Define 2° = 27 = x7, define Kk} = k.,
and define ko, = Kyo.

First, we claim that A 7Z x%. Indeed, assume by way of contradiction that s} = A
and define B = (k,\C*). Since k% = (ko N C*) C (ko N C*) U (C\ko) = (C\B), thus
by monotonicity we have (C\B) 77 k% = A. By Step 1, there are y(A),y(C\B) € [0, 1]
such that kyay ~ A and kyc\p) ~ (C\B), and moreover by monotonicity we have
y(C\B) > y(A). Then kya) and (C\kyc\p)) are disjoint, and by Lemma 5 the former
is equivalent to A and the latter is equivalent to B; define A & B to be their union
Ky(a) U (C\kyc\p)). For each z € [0,2°), we have < 2 and thus x} > A > &7, so by
Lemma 5 we have k, = Kk} UB = A® B > ki U B 7 k,. But then by monotonicity we
have that {t € [0,1]|]A@® B Z k:} = [0,2°), so this set is not closed, contradicting knife
continuity.

To conclude, we first claim that k¥ 7~ A. Indeed, the argument is symmetric: we omit
the details, but remark that if for each ¢ € [0, 1] we define s} = (C'\k;1_¢), then we can
use the same argument using ' instead of k. Altogether, then, C* N ko = kX ~ A, as
desired.

STEP 3: Conclude.

We claim that for each pair A,B € S, if for each A’ € S such that A’ = ( and
ANA = we have AUA" = B, then A = B. Indeed, let A and B satisfy the hypothesis.
By Step 1, there are t,t' € [0,1] such that x;, ~ A and kv ~ B; thus we can define
ta = sup{t € [0,1]]A ~ K} and tp = inf{t € [0,1]|B ~ k¢}. By knife continuity,
ki, ~ A and Ky, ~ B. Assume, by way of contradiction, that tg > t4, and define
t* = tadts By definition of ¢4 and ¢p and monotonicity, we have B = Ky = A ~ Ky ;
thus by separability and monotonicity we have (C\A) - (ke \ke,) > 0. By Step 2, there
is t € [0, 1] such that for A’ = (C\A) N Ky, we have A" ~ (k4\ky,) = 0. By Lemma 5 we
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have AU A" ~ k¢, U (k= \Ke,) = k=, and by hypothesis we have AU A’ 77 B. But then
ke o= B, contradicting B = k. Altogether, then, t4 > tg, so by monotonicity we have
A~ Ky, 7 ki, ~ B, as desired.

To conclude, tightness follows directly from the claim. H

The theorem follows easily from the proposition.

THEOREM 2 (RESTATED): Fix a kitchen. A qualitative probability - satisfies fineness,
sliver nullity, and knife continuity if and only if there is a kitchen measure o such that
for each pair A, B € S, we have A 77 B if and only if po(A) > po(B). In this case, uo is
the unique such kitchen measure.

PRrROOF: It is straightforward to verify that if >~ has a kitchen measure representation,
then it satisfies the axioms; we omit the argument. Thus let us assume that - satisfies
fineness, sliver nullity, and knife continuity. By Proposition 3, 7 satisfies tightness, so
by Theorem WM it has a unique probability measure measure representation py whose
range R = {uo(A)|A € S} is a dense subset of the unit interval. Let x € K and let
f 10,1 — [0,1] be such that for each t € [0,1], f(t) = po(k:). For each v € R,
there is A, € S such that py(A,) = v, so by Proposition 3 there is ¢ € [0, 1] such that
ke = (C N k) ~ A, and thus pg(ky) = v; thus v € f([0,1]). Since v € R was arbitrary,
thus R C f([0,1]), so R = f([0,1]). Then the range of f is a dense subset of the unit
interval, and moreover by monotonicity f is non-decreasing, so by a classic result!® we
have that f is continuous. Since f(0) =0 and f(1) =1, thus 0 € R and 1 € R, so by the
Intermediate Value Theorem we have that R = f([0,1]) = [0,1]. From here, it follows
directly from sliver nullity and Proposition 3 that ug is a kitchen measure. B

Appendix 5

In this appendix, we prove Theorem 3.

THEOREM 3 (RESTATED): Fix a setting and let e € E. If all entitlements are rational,
then the game has a value and this value is achieved in a Nash equilibrium. If there
is an irrational entitlement, then the game’s value is —oo but the game has no Nash
equilibrium.

PRrROOF: Fix a setting and let e € F.

First, we associate each protocol with a mediator strategy in the adversary game.
Indeed, select an arbitrary allocation X € X. For each protocol w € II, let o, € X,,
denote the following strategy: at each history h in the adversary game (i) if D(h) # 0,
then let o, (h) denote the action taken at the information set in the division game whose
chronicle is h, and (ii) if D(h) = 0, then o, (h) = X.

Second, we associate each mediator strategy in the adversary game with a protocol.
Indeed, for each o € X, let 7, € II denote the following protocol: at each information
set in the division game, let h denote the associated chronicle and select the action o(h).

161n particular, if f : [0,1] — [0, 1] has dense range and is non-decreasing, then it is continuous. This
result is sometimes called Froda’s Theorem; see Theorem 4.30 and its corollary in Rudin (1976).
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Finally, we associate each measure profile with an adversary strategy. Indeed, for
each measure profile p € D, let o, € ¥, denote the following strategy: after each query

g, select r(q|u).

CASE 1: All entitlements are rational. Define ¢ = cost(e). By definition, there is an
optimal protocol 7* such that cost(mw) = ¢. Moreover, since there is a bounded protocol
(Steinhaus, 1948), thus ¢ € Ny, so there is p* € D such that cost(m*|u*) = c. It is
straightforward to verify that (i) (o, 0,-) is a Nash equilibrium, (ii) P(0x+,0,+) = ¢,
and (iii) ¢ is the value of the adversary game.

CASE 2: There is an irrational entitlement. First, we claim that the adversary game
has no Nash equilibrium. Indeed, assume by way of contradiction that (o,,,0,) is a Nash
equilibrium. We must have P(0,,, 0,) = —o0, else since 7, is not bounded (Corollary 1),
there is p € D such that cost(m,,,|1n) > —P(0y,0,), 80 P(om,0,) = —cost(n,,,|1t) <
P(o,,,04), contradicting that (o,,,0,) is a Nash equilibrium. But then since there is a
finite protocol 7 (Barbanel, 1995), necessarily P(o,,0,) > —00 = P(0,,, o), contradicting
that (0,,,0,) is a Nash equilibrium.

Second, we claim that sup, .5 inf,, ex, P(0m,0,) = —00. Indeed, for each o,, € E,,
and each ¢ € Ny, since 7,, is not bounded (Corollary 1) there is u € D such that
—P(oy, 0,) = cost(m,, |1t) > ¢, so inf, ex, P(op, 04) < P(oy,,0,) < —c. Since ¢ € Ny was
arbitrary, thus inf, cs, P(o,,0,) = —00. Since o, € ¥, was arbitrary, we are done.

Finally, we claim that inf, cx, sup, 5 P(0,,0,) = —00. Indeed, let ¢* € Ny denote
an arbitrary cost; we exhibit an adversary strategy o. that guarantees a higher cost.
First, define ¢, = 25°, and for each ¢ € {0,1,...,¢* — 1} define oy = |\/0./2]. It is
straightforward to verify by induction that for each ¢ € {0, 1, ..., ¢*}, we have ¢, > 228*_0,
and in particular /.« > 2. We construct o.- sequentially: at each adversary history h such
that we have already defined the adversary’s actions at all earlier adversary histories,
define 0. (h) as follows.

o If (i) D(h) # 0, (ii) there have thus far been ¢ € {0,1,...,¢* — 1} queries, and
(iii) there is an f.-deficient partition record (P, «) that extends the record given
by all previous responses, then if q denotes the most recent (and only unanswered)
query, Lemma 4 promises there is (P*,a™) € R(q|P, «) that is £, ;-deficient. Select
a measure 4 € D associated with this ultraresponse, then select the response r(q|u).

e Otherwise, select any response.

This completes our definition of o.«. By construction, for each mediator strategy o, € ¥,,
and each ¢ € {0,1,...,c*}, if there is a mediator history h at which ¢ queries have been
already asked that is on-path given (o,,,0.), then the record of all previous responses
can be extended to a partition record (P, «) that is {.-deficient, and moreover ¢, > {. >
2 > 1, so there is no allocation that is e-proportional for each member of D(P, «) and
D(P,a) € D(h). Since ¢ € {0,1,...,c¢"} was arbitrary, thus P(o,,,0.) < —c*. Since
Om € X, was arbitrary, thus inf, es, sup, cx P(0p,04) < sup, oy P(om,00) < —c*.
Since ¢* € Ny was arbitrary, we are done. ll
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